Skip to main content

Research Repository

Advanced Search

Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing

La Spina, G.; Arzilli, F.; Llewellin, E.W.; Burton, M.R.; Clarke, A.B.; de' Michieli Vitturi, M.; Polacci, M.; Hartley, M.E.; Di Genova, D.; Mader, H.M.

Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing Thumbnail


Authors

G. La Spina

F. Arzilli

M.R. Burton

A.B. Clarke

M. de' Michieli Vitturi

M. Polacci

M.E. Hartley

D. Di Genova

H.M. Mader



Abstract

The dichotomy between explosive volcanic eruptions, which produce pyroclasts, and effusive eruptions, which produce lava, is defined by the presence or absence of fragmentation during magma ascent. For lava fountains the distinction is unclear, since the liquid phase in the rising magma may remain continuous to the vent, fragment in the fountain, then re-weld on deposition to feed rheomorphic lava flows. Here we use a numerical model to constrain the controls on basaltic eruption style, using Kilauea and Etna as case studies. Based on our results, we propose that lava fountaining is a distinct style, separate from effusive and explosive eruption styles, that is produced when magma ascends rapidly and fragments above the vent, rather than within the conduit. Sensitivity analyses of Kilauea and Etna case studies show that high lava fountains (>50 m high) occur when the Reynolds number of the bubbly magma is greater than ∼0.1, the bulk viscosity is less than 106 Pa s, and the gas is well-coupled to the melt. Explosive eruptions (Plinian and sub-Plinian) are predicted over a wide region of parameter space for higher viscosity basalts, typical of Etna, but over a much narrower region of parameter space for lower viscosity basalts, typical of Kilauea. Numerical results show also that the magma that feeds high lava fountains ascends more rapidly than the magma that feeds explosive eruptions, owing to its lower viscosity. For the Kilauea case study, waning ascent velocity is predicted to produce a progressive evolution from high to weak fountaining, to ultimate effusion; whereas for the Etna case study, small changes in parameter values lead to transitions to and from explosive activity, suggesting that eruption transitions may occur with little warning.

Citation

La Spina, G., Arzilli, F., Llewellin, E., Burton, M., Clarke, A., de' Michieli Vitturi, M., Polacci, M., Hartley, M., Di Genova, D., & Mader, H. (2021). Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing. Earth and Planetary Science Letters, 553, Article 116658. https://doi.org/10.1016/j.epsl.2020.116658

Journal Article Type Article
Acceptance Date Oct 30, 2020
Online Publication Date Nov 16, 2020
Publication Date Jan 1, 2021
Deposit Date May 12, 2021
Publicly Available Date May 13, 2021
Journal Earth and Planetary Science Letters
Print ISSN 0012-821X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 553
Article Number 116658
DOI https://doi.org/10.1016/j.epsl.2020.116658
Public URL https://durham-repository.worktribe.com/output/1275144

Files






You might also like



Downloadable Citations