Rong Jiayu
The latest Ordovician Hirnantian brachiopod faunas: New global insights
Jiayu, Rong; Harper, D.A.T.; Bing, Huang; Rongyu, Li; Xiaole, Zhang; Di, Chen
Authors
Abstract
The temporal and spatial distribution of Hirnantian brachiopod faunas are reviewed based on a new, comprehensive dataset from over 20 palaeoplates and terranes, a revised correlation scheme for Hirnantian strata and numerical methods including network analysis. There were two successive evolutionary faunas: 1. the widespread and diachronous Hirnantia Fauna related to the glacial acme in the early−mid Hirnantian, including shallow, deeper and deep-water communities that diversified in much more complicated environmental conditions than hitherto envisaged; and 2. the Edgewood-Cathay Fauna (new term) thrived during post-glacial, warmer, shallow-water regimes with both carbonate and siliciclastic facies from low latitudes in the late Hirnantian−early Rhuddanian. The two survival faunas can occur in the same order in different regions, immediately following the first and second phases of the Hirnantian crisis, respectively. This faunal succession records two climatic perturbations, one with a glaciation, associated with climatic cooling and a global low-stand, during which the Hirnantia Fauna flourished, and a second characterized by melting ice, global warming, and sea-level rise (with global anoxia), aligned to the development of the Edgewood-Cathay Fauna and the repopulation of the seas by many animals adapted to warmer water, e.g., metazoan reefs, massive tabulates, and sponges. Changes in many properties of the Hirnantia Fauna may have resulted from the heterogeneity of global climate change in time and space; contrasts in the Edgewood-Cathay faunas record differences between carbonate and siliciclastic deposition, respectively, at low latitudes. Intense climate changes, sea-level fluctuations, and oceanographic ventilation and anoxia, had important roles in brachiopod evolution through the Hirnantian extinctions as first taxa confined to warm-water and then cool-water conditions were the main victims. During the Hirnantian, higher originations of new taxa may have been a response to crises, which increased the rate of phyletic evolution due to extreme climatic conditions.
Citation
Jiayu, R., Harper, D., Bing, H., Rongyu, L., Xiaole, Z., & Di, C. (2020). The latest Ordovician Hirnantian brachiopod faunas: New global insights. Earth-Science Reviews, 208, Article 103280. https://doi.org/10.1016/j.earscirev.2020.103280
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 6, 2020 |
Online Publication Date | Jul 11, 2020 |
Publication Date | 2020-09 |
Deposit Date | Jul 14, 2020 |
Publicly Available Date | Jul 11, 2021 |
Journal | Earth-Science Reviews |
Print ISSN | 0012-8252 |
Electronic ISSN | 1872-6828 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 208 |
Article Number | 103280 |
DOI | https://doi.org/10.1016/j.earscirev.2020.103280 |
Public URL | https://durham-repository.worktribe.com/output/1266666 |
Files
Accepted Journal Article
(4.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
A new interpretation of Pikaia reveals the origins of the chordate body plan.
(2024)
Journal Article
A giant stem-group chaetognath.
(2024)
Journal Article
Late Ordovician Mass Extinction: Earth, fire and ice
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search