Haofeng Zhang
Pseudo Distribution on Unseen Classes for Generalized Zero Shot Learning
Zhang, Haofeng; Liu, Jingren; Yao, Yazhou; Long, Yang
Abstract
Although Zero Shot Learning (ZSL) has attracted more and more attention due to its powerful ability of recognizing new objects without retraining, it has a serious drawback that it only focuses on unseen classes during prediction. To solve this issue, Generalized ZSL (GZSL) extends the search range to both seen and unseen classes, which makes it a more realistic and challenging task. Conventional methods on GZSL often suffer from the domain shift problem on seen classes because they have only seen data for training. Deep Calibration Network (DCN) tries to minimize the entropy of assigning seen data to unseen classes to balance the training on both seen and unseen classes. However, there are still two problems for DCN, one is the hubness problem and another is the lack of training guidance. In this paper, to solve the two problems, we propose a novel method called PSeudo Distribution (PSD), which exploits the attribute similarity between seen classes and unseen classes as the training guidance to assign the seen data to unseen classes. In addition, the attribute similarity is also compressed to one-hot vector to further encourage the certainty of the model. Besides, the visual space is utilized as the embedding space, which can well settle the hubness problem. Extensive experiments are conducted on four popular datasets, and the results show the superiority of the proposed method.
Citation
Zhang, H., Liu, J., Yao, Y., & Long, Y. (2020). Pseudo Distribution on Unseen Classes for Generalized Zero Shot Learning. Pattern Recognition Letters, 135, 451-458. https://doi.org/10.1016/j.patrec.2020.05.021
Journal Article Type | Article |
---|---|
Acceptance Date | May 18, 2020 |
Online Publication Date | May 21, 2020 |
Publication Date | Jul 31, 2020 |
Deposit Date | May 22, 2020 |
Publicly Available Date | May 21, 2021 |
Journal | Pattern Recognition Letters |
Print ISSN | 0167-8655 |
Electronic ISSN | 1872-7344 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 135 |
Pages | 451-458 |
DOI | https://doi.org/10.1016/j.patrec.2020.05.021 |
Public URL | https://durham-repository.worktribe.com/output/1263862 |
Files
Accepted Journal Article
(3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
EfficientTDNN: Efficient Architecture Search for Speaker Recognition
(2022)
Journal Article
Kernelized distance learning for zero-shot recognition
(2021)
Journal Article
A plug-in attribute correction module for generalized zero-shot learning
(2020)
Journal Article
Semantic combined network for zero-shot scene parsing
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search