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Highlights

1. Attribute similarity is exploited as the Pseudo distribution to solve

the over-fitting on GZSL;

2. Attribute similarity is further compressed as one-hot vector to

encourage the certainty of the training;

3. Visual space is employed as the embedding space to alleviate the

hubness problem;

4. The proposed PSD can significantly outperform the SOTA

methods by large margins on GZSL

                  



1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Pseudo Distribution on Unseen Classes for Generalized Zero Shot Learning

Haofeng Zhanga,∗∗, Jingren Liua, Yazhou Yaoa, Yang Longb

aSchool of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
bSchool of Computer Science, Durham University, Durham, UK

ABSTRACT

Although Zero Shot Learning (ZSL) has attracted more and more attention due to its powerful ability
of recognizing new objects without retraining, it has a serious drawback that it only focuses on unseen
classes during prediction. To solve this issue, Generalized ZSL (GZSL) extends the search range to
both seen and unseen classes, which makes it a more realistic and challenging task. Conventional
methods on GZSL often suffer from the domain shift problem on seen classes because they have only
seen data for training. Deep Calibration Network (DCN) tries to minimize the entropy of assigning
seen data to unseen classes to balance the training on both seen and unseen classes. However, there
are still two problems for DCN, one is the hubness problem and another is the lack of training
guidance. In this paper, to solve the two problems, we propose a novel method called PSeudo
Distribution (PSD), which exploits the attribute similarity between seen classes and unseen classes
as the training guidance to assign the seen data to unseen classes. In addition, the attribute similarity
is also compressed to one-hot vector to further encourage the certainty of the model. Besides, the
visual space is utilized as the embedding space, which can well settle the hubness problem. Extensive
experiments are conducted on four popular datasets, and the results show the superiority of the
proposed method.

Keywords: Generalized Zero Shot Learning; Pseudo Distribution; Attribute Similarity
c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent decade, deep learning has gained great success
in many areas, especially on image classification that the top-5
accuracy on ImageNet Deng et al. (2009) is over 95%, which is
considered to have exceeded the recognition ability of human
beings. However, the traditional classification is conducted on
close-set that the test classes should be same as the training
data. In the current era of data explosion, an increasing number
of new categories have been emerging everyday, and the close-
set classification cannot fulfill the requirement of recognizing
new objects. Therefore, Zero Shot Learning (ZSL) was pro-
posed to solve such problem Lampert et al. (2009); Zhang et al.
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(2019d); Guo et al. (2017), it has attracted more and more atten-
tion due to its ability of recognizing unseen categories, and has
been applied in many areas such as image classification Long
et al. (2018b); Yu et al. (2018b); Chiaro et al. (2019), multime-
dia retrieval Ji et al. (2020) and object detection Bansal et al.
(2018).

ZSL is inspired by the way of human understanding new
things, e.g., if a child has never seen a zebra before, but he
is told that the zebra has the same shape as a horse and black-
and-white stripes, then when he sees a zebra, he must be able to
recognize it. Therefore, ZSL usually employs medium informa-
tion, such as semantic attributes, to bridge the seen classes and
the unseen classes. Most ZSL works project visual features into
semantic space and find the nearest neighbor from predefined
attributes Lampert et al. (2009); Akata et al. (2013); Zhang et al.
(2019a,c). This type of methods often suffer from serious do-
main shift problem due to their negligence of unseen classes
during training, i.e., they can obtain good performance on seen
classes but perform bad on unseen classes, especially on the
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Fig. 1. Illustration of the difference between ZSL and GZSL. The green
font stands for seen classes and the red font means unseen classes.

more reasonable and realistic Generalized ZSL (GZSL) setting,
which is first defined by Chao et al. Chao et al. (2016), because
GZSL extends the search scope from only the seen classes to
both seen and unseen classes during testing. The difference be-
tween ZSL and GZSL is illustrated in Fig. 1.

To cope with such problem, Liu et al. proposed a Deep Cali-
bration Network (DCN) Liu et al. (2018a) to balance the train-
ing between seen and unseen classes by computing the sim-
ilarity between the seen data and the unseen classes. DCN
assumes that the entropy of assigning a seen data to an un-
seen class should be minimized to constrain the certainty of
the model, and achieves a significant success. However, there
are still two problems. The first one is that DCN often suffers
from the hubness problem because it use the low-dimensional
attribute space or latent space as its embedding space, i.e., a few
unseen class prototypes will become the nearest neighbors of
many data points. Using the semantic space as the embedding
space means that the visual feature vectors need to be projected
into the semantic space which will shrink the variance of the
projected data points and thus aggravate the hubness problem
Zhang et al. (2017). To solve this problem, some recent works
Huang et al. (2019); Xian et al. (2018b); Zhu et al. (2018); Li
et al. (2019) propose to use generative methods that can gen-
erate unseen visual features conditioned on their correspond-
ing attributes, and the generated features are combined with the
seen samples to train a fully supervised model. However, these
generative methods often include two steps, which make them
not end-to-end training. In addition, some researchers Shigeto
et al. (2015); Zhang et al. (2017) proposed to project semantic
attributes into high dimensional space, which is easy to imple-
ment and can achieve significant improvement, so we will also
adopt this strategy in our method. The second problem is that
DCN does not know which unseen class should be guided to for
a seen data point although it can encourage the certainty of clas-
sifying it to an unknown unseen class, which is called training
guidance problem here.

To solve the above two mentioned problems, in this paper, we
propose a novel method called PSeudo Distribution (PSD) of
seen data on unseen classes, which can well alleviate the prob-
lem of training guidance. Concretely, we employ the attribute
similarity between the seen classes and unseen classes as the
training guidance, which can directly guide the training direc-

tion for the unseen classes. Furthermore, to be more certainty,
we also compress the attribute similarities to one-hot vectors.
In addition, we take the visual space as the embedding space,
and project the semantic attributes to visual space as visual pro-
totypes to mitigate the hubness problem. The contributions of
our work are listed as follows,

• We propose a novel method called PSD for the assignment
of seen data on unseen classes to alleviate the domain shift
problem on GZSL;

• The attribute similarity between the seen classes and un-
seen classes are exploited as the PSD to guide the direction
for training of the unseen classes; besides, the visual space
is employed as the embedding space to solve the hubness
problem;

• Extensive experiments are conducted on four popular
datasets, and the results shows the proposed method can
significantly outperform the state-of-the-art methods by
large margins.

The main content of this paper is organized as follows: In
section 2 we briefly introduce the existing methods for ZSL.
Section 3 describes the proposed method in detail. Section
4 gives the experimental results of comparison with existing
methods on GZSL. Finally in section 5, we conclude this paper.

2. Related Works

Zero Shot Learning (ZSL) tries to classify unseen data points
by transferring the knowledge learned from seen classes to un-
seen classes with semantic attributes. Recently, a large number
of researchers have been endeavoring in this field. The earli-
est works such as Direct Attribute Projection (DAP) Lampert
et al. (2009) directly project the visual features into semantic
space, and then learn a SVM classifier to estimate the labels.
In Attribute Label Embedding (ALE) Akata et al. (2016) and
SJE Akata et al. (2015a), Akata et al. projected visual features
into semantic space via a bilinear compatibility constraint and
maximize the similarity between different attributes with a max
margin loss. CONvex combination of Semantic Embeddings
(CONSE) Norouzi et al. (2014) and Semantic Similarity Em-
bedding (SSE) Zhang and Saligrama (2015) try to build unseen
attributes automatically from the instances of seen categories
to reduce the requirement of manual attributes. Furthermore,
some researchers such as Kodirov et al. Kodirov et al. (2017)
introduced the concept of Auto-Encoder and directly use the
Euclidean distance to constrain the similarity of projected vec-
tors in both visual and attribute spaces.

To alleviate the hubness problem, Zhang et al. proposed a
method called Deep Embedding Model (DEM) Zhang et al.
(2017) to use the visual space as the embedding space, in which
the subsequent nearest neighbour search becomes more effec-
tive. Although DEM can achieve better performance than those
methods using semantic space as the embedding space, it still
suffers from the domain shift problem due to its negligence of
unseen classes during training. For fine-grained zero shot image
classification problem, Ji et al. proposed to exploit an attention
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Fig. 2. The flowchart of the proposed method. The dashed box contains three types of pseudo distributions.

network Ji et al. (2019); Yu et al. (2018a) to obtain semantic rel-
evant features by using individual class semantic features, and
generate an attention map for weighting the importance of dif-
ferent local regions, which has obtained great success. Liu et
al. Liu et al. (2020) exploited the one-hot label space as the
common embedded space for both visual features and semantic
attributes during training, and considered the labels of unseen
classes as the linear combination of labels of seen classes in test
phase.

In addition, Long et al. in Long et al. (2017) proposed to
use the attributes of unseen classes to synthesize unseen visual
features, and then train a supervised model with seen and syn-
thesized unseen visual features. Thereafter, due to the power-
ful ability of sample synthesis, an increasing number of Gen-
erative Adversarial Net (GAN) Goodfellow et al. (2014) based
ZSL methods have been proposed Zhang et al. (2019b); Huang
et al. (2019); Xian et al. (2018b); Zhu et al. (2018); Li et al.
(2019); Yu et al. (2020), and these methods leverage the unseen
attributes to generate synthesized unseen visual features, which
are subsequently combined with seen visual features to learn a
fully supervised model. Those methods can achieve state-of-
the-art performance, but they all suffer from the same problem
as the close-set classification that when there is a totally new
category it should be retrained by adding the synthesized sam-
ples of the new class.

Different from conventional ZSL, which assumes that all the
test samples are only from unseen categories, Generalized ZSL
(GZSL), which is firstly proposed by Chao et al. in Chao et al.
(2016), enlarges the search scope to all classes, because we
cannot obtain the information that whether the test data only
belongs to the unseen classes beforehand in most scenarios,
therefore GZSL is a more realistic and challenging task. Be-
sides, due to the fact that there was no agreed upon ZSL bench-
mark, Xian et al. Xian et al. (2018a) defined a new bench-

mark by unifying both the evaluation protocols and data splits
of several publicly available datasets. They also analyzed a sig-
nificant number of the state-of-the-art methods in depth, both
in the classic ZSL setting and the more realistic GZSL setting,
which has made a great contribution to this research field.

The most relevant to our method is the Deep Calibration Net-
work (DCN) Liu et al. (2018a), which projects the visual fea-
tures and attributes into a latent space, where the visual fea-
tures are assigned to both seen classes and unseen classes to
balance the training in order to solve the domain shift prob-
lem. However, there are still two problems to be solved, one
is the hubness problem caused by using the attribute space as
the embedding space, another is the lack of training guidance
that DCN only minimizes the entropy of assigning seen data to
unseen classes but ignores which class should be assigned.

3. Methodology

3.1. Problem Definition

Let Cs = {c1, c2, · · · , cm} denote a set of seen classes and
Cu = {cm+1, cm+2, · · · , cm+n} is the set of unseen classes, where
m and n are the numbers of the seen classes and unseen classes.
The two sets are disjoint, i.e., Cs ∩ Cu = ∅. In addition, As =

{as
1, a

s
2, · · · , as

m} ∈ Rda×m and Au = {au
m+1, a

u
m+2, · · · , au

m+n} ∈
Rda×n are the two corresponding attribute sets for the seen
classes and unseen classes respectively, where da is the dimen-
sion of the attribute vector.

Suppose it is given a set of labeled features Xs =

{xs
1, · · · , xs

i , · · · , xs
Ns
} ∈ Rdx×Ns from the seen classes, where dx

is the dimension of the feature and Ns is the number of sam-
ples. Let Xu = {xu

1, · · · , xu
i , · · · , xu

Nu
} ∈ Rdx×Ns denote the test

dataset from the unseen classes, where Nu is the number of the
samples, and there is no label for them. The objective of GZSL
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is to assign labels to the test data Xu by learning a classifier
F (xu

i ) → Ss ∪ Su with the training data Xs and the whole at-
tribute set As ∪ Au.

3.2. Architecture

The flowchart of the proposed method is shown in Fig. 2,
where the upper branch is designed for images feature extrac-
tion, and the bottom branch is utilized for attribute projection.
In the upper branch, we use the pre-trained ResNet101 He et al.
(2016) as the feature extraction module, and the parameters of
it are fixed during training and test. In the bottom branch, the
attributes are extracted from class names with Word2Vec or an-
notated by experts, and we use the expert-annotated attributes
in our method. The attributes pass through a two-layer fully
connection network, which has a Rectified Linear Unit (ReLU)
attached to the first layer and a tanh operation appended to the
second layer.

The inner product of visual features and all the attributes are
executed, and the results are divided into two parts, the seen one
and the unseen one. The seen part is a traditional fully super-
vised problem, thus we employ the classical cross entropy as its
loss function J . For the unseen part, since there is no ground-
truth matching for seen data and unseen classes, we introduce
the pseudo distribution as its label. Therefore, the unseen part
can also be calculated with the cross entropy loss H , and the
total loss function can be defined as,

L = J + λH , (1)

where λ is the balancing coefficient to control the importance
of the two parts in Eq. 1. In the following subsections, we will
describe the details of the seen part and the unseen part.

3.3. Loss for Seen Classes

Because the visual features are extracted with fixed pre-
trained ResNet, they can be considered as the direct input of
the upper branch. If we denote the attribute projection function
in the bottom part as f (a j), the probability of the input visual
feature xs

i on the seen category as
j can be defined as,

ps(xs
i , a

s
j) =

exp<xs
i , f (as

j)>

∑m
j=1 exp<xs

i , f (as
j)>
, (2)

where, < ·, · > is the inner product. Then, the entropy loss can
be calculated as,

J = − 1
Ns

Ns∑

i=1

m∑

j=1

yi j log ps(xs
i , a

s
j)

+ (1 − yi j) log(1 − ps(xs
i , a

s
j)),

(3)

where, yi j denotes the one-hot label value of xs
i on the seen

category c j. If xi belongs to the class c j, yi j = 1, otherwise
yi j = 0.

3.4. Loss for Unseen Classes

Similarly, the probability of a seen visual feature xs
i on an

unseen class au
j is defined as,

pu(xs
i , a

u
j ) =

exp<xs
i , f (au

j )>

∑m+n
j=m+1 exp<xs

i , f (au
j )>
. (4)

Due to the fact that there is no label for a seen feature on an
unseen class, thus we have to define a pseudo distribution for
it. In the following, we will give three types of pseudo distribu-
tions.
Entropy:

It is known that the entropy means when the data source
produces a low-probability value (i.e., when a low-probability
event occurs), the event carries more “information” than when
the source data produces a high-probability value 1. Generally,
entropy refers to disorder or uncertainty, the hight the entropy
is the more uncertainty the model is. Therefore, the entropy in
our method should be the lower the better. Similar as that in Liu
et al. (2018a), we define the entropy loss for the unseen part,

HE = − 1
Ns

Ns∑

i=1

m+n∑

j=m+1

pu(xs
i , a

u
j ) log pu(xs

i , a
u
j ). (5)

In Eq. 5, we can consider pu(xs
i , a

u
j ) as the pseudo distribu-

tion of xs
i on the unseen classes, and the loss function as the

cross entropy for the probability and the pseudo distribution.
Attribute Similarity:

Although the entropy loss defined above can encourage the
model to be certainty, there is no clear guidance for a feature to
be classified to a fixed class. Therefore, to solve such problem,
we employ the attribute similarity as the pseudo distribution of
the seen data on unseen classes. The similarity of attributes can
be defined as,

si j = S imi(as
i , a

u
j ) =

< f (as
i ), f (au

j ) >

‖ f (as
i )‖2‖ f (au

j )‖2
. (6)

In Eq. 6, we use f (as
i ) and f (au

j ) instead of as
i and au

j because
some original attributes are very similar and not discriminative,
e.g., “blue wale”, “humpback wale” and “killer wale”, which
will make them hard to be classified. Similar as the seen classes,
the loss function of the unseen part can be defined as,

HS = − 1
Ns

Ns∑

i=1

m+n∑

j=m+1

si j log pu(xs
i , a

u
j ). (7)

One-hot Attribute Similarity:
To be more certainty, we further compress the attribute simi-

larity to be one-hot vector as follows,

hi j =



1 j = arg max
j∈{m+1,··· ,m+n}

si j

0 otherwise
, (8)

1https://en.wikipedia.org/wiki/Entropy
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Table 1. Summary of the employed four datasets.

Datasets
Dimension Class Number Samples Number
Feat. Att. Seen Unseen SS TS TR

SUN 2048 102 645 72 10320 1440 2580
CUB 2048 312 150 50 7057 2967 10320
AWA 2048 85 40 10 19832 4958 5685
aPY 2048 64 20 12 5932 7924 1483

where si j is computed with Eq. 6. The final loss function of the
unseen part can be calculated as,

HO = − 1
Ns

Ns∑

i=1

m+n∑

j=m+1

hi j log pu(xs
i , a

s
j)

+ (1 − hi j) log(1 − pu(xs
i , a

s
j)).

(9)

After the definition of three types of the loss functions for the
unseen part, H in Eq. 1 can be replaced with each of HE , HS

and HO. Since the network in Fig. 2 is an end-to-end archi-
tecture, the projection parameters for the bottom branch can be
easily optimized by applying the mini-batch Stochastic Gradi-
ent Descent (SGD).

3.5. Zero Shot Classification

When the network training is finished, the label of the unseen
data can be predicted with the following equation,

c = arg max
j∈{1,··· ,m+n}

< xu
i , f (a j) >, (10)

where a j denotes as
j when j ∈ {1, · · · ,m} and au

j for j ∈ {m +

1, · · · ,m + n}.

4. Experiments

4.1. Datasets and Settings

Datasets: In our experiments, we employ four popular bench-
mark datasets, i.e., SUN (SUN attribute) Patterson et al.
(2014), CUB (Caltech-UCSD-Birds 200-2011) Wah et al.
(2011), AWA(Animals with Attributes) Lampert et al. (2009)
and aPY(Attribute Pascal and Yahoo) Farhadi et al. (2009a).
SUN is a type of fine-grained dataset, which contains many dif-
ferent visual scenes and CUB is also a fine-grained dataset, and
it is consisted of 200 bird-species. AWA is a coarse-grained
dataset of 50 classes of animals. APY has 20 classes from Pas-
cal VOC Everingham et al. (2010) for training and 12 classes
from Yahoo Farhadi et al. (2009b) for test. The other details of
these datasets can be found in Tab. 1, where ‘SS’ refers to num-
ber of Seen Samples in training, ‘TS’ is the number of samples
from unseen classes for test, and ‘TR’ is for the seen ones. In
addition, we adopt the split strategy which is proposed by Xian
et al. (2018a).
Settings: There are three hyper-parameters in our method, i.e.,
the learning rate of the deep network, the batch size for SGD
and the balancing coefficient λ for Eq. 1. The learning rate and
the batch size are set to 3 × 10−4 and 128 respectively for all
four datasets. λ is decided by applying cross-validation, which
is different from traditional fully supervised strategy. Here we

split the part of the seen classes as the validation unseen classes,
and the searching range of λ is restricted to [0.01, 1].
Evaluational Metrics: Conventional ZSL metric assumes that
the test data in advance are known belonging to unseen classes,
and will be tested only on unseen classes, which is unreasonable
in realistic scenarios. We usually do not know the ascription of
the test data in advance, thus it is necessary to find the best
assignment on both seen and unseen classes. Furthermore, the
model should be not only suitable for unseen classes but also
should maintain the performance on seen classes. The metrics
are described as follows,

• Seen test accuracy tr: Average per-class classification ac-
curacy for seen test samples;

• Unseen test accuracy ts: Average per-class classification
accuracy for unseen test samples;

• Harmonic accuracy H: traditional arithmetic mean H =

(tr + ts)/2, which computes the average value of tr and ts,
can still generate good results when one of tr and ts is high
and the other is very low. However, very low accuracy on
single metric often means the trained model fails, thus here
we use harmonic accuracy H = (2 × tr × ts)/(tr + ts) Xian
et al. (2018a) to replace the arithmetic mean.

4.2. Results on GZSL

We conduct the the experiments on the above mentioned four
datasets, and the results are reported in Tab. 2. Since our
method is specially designed for GZSL, which is more rea-
sonable in realistic scenarios, we do not report the results on
conventional ZSL. Besides, in order to better show the supe-
riority of the proposed method, we compare it with 22 meth-
ods, which can be found in Tab. 2. The results of the first
12 methods are directly cited from Xian et al. (2018a), the re-
sults of PRESERVE Annadani and Biswas (2018), CDL Jiang
et al. (2018), LAGO Atzmon and Chechik (2018), PSEUDO
Long et al. (2018a), KERNEL Zhang and Koniusz (2018), TVN
Zhang et al. (2019a), DEM Zhang et al. (2017), LESAE Liu
et al. (2018b), ICINESS Guo et al. (2018) and DCN Liu et al.
(2018a) are excerpted from their original papers, and the re-
maining methods such as VZSL Wang et al. (2018) and LESD
Ding et al. (2017) are implemented by us according to the orig-
inal description in those papers.

Compared with these baselines, it can be clearly found that
our method can outperform all of them, and exceed them with
large margins. Concretely, our method can achieve best perfor-
mances on both ts and H on all four datasets. Especially, com-
pared to the most similar method DCN, our method can obtain
the improvements by 8.8%, 10.2%, 11.5% and 13.8% respec-
tively on ts and 6.6%, 6.0%, 17.1% and 9.8% respectively on
H.

In addition, the entropy loss for unseen part in our method is
same as that in DCN Liu et al. (2018a) but with different net-
work architecture, so we report the results, which is recorded as
PSD-EN, to show the effect of the proposed network. It can be
seen that although the two methods have same loss function, the
different network can improve the performance by 3.4%, 3.9%,
13.1% and 7.4% respectively on H. Furthermore, PSD-AS for

                  



6

Table 2. Comparison with state-of-the-art baselines on GZSL setting.‘-’ means not reported.
SUN CUB AWA aPY

Method ts tr H ts tr H ts tr H ts tr H
DAP Lampert et al. (2009) 4.2 25.1 7.5 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0
CONSE Norouzi et al. (2014) 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0
SSE Zhang and Saligrama (2015) 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4
LATEM Xian et al. (2016) 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2
ALE Akata et al. (2013) 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7
DEVISE Frome et al. (2013) 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2
SJE Akata et al. (2015b) 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9
ESZSL Romera-Paredes and Torr (2015) 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6
SAE Kodirov et al. (2017) 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 0.4 80.9 0.9
SYNC Changpinyo et al. (2016) 7.0 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3
GFZSL Verma and Rai (2017) 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 0.0 83.3 0.0
PRESERVE Annadani and Biswas (2018) 20.8 37.2 26.7 24.6 54.3 33.9 - - - 13.5 51.4 21.4
CDL Jiang et al. (2018) 21.5 34.7 26.5 23.5 55.2 32.9 28.1 73.5 40.6 19.8 48.6 28.1
LAGO Atzmon and Chechik (2018) 18.8 33.1 23.9 21.8 73.6 33.7 23.8 67.0 35.1 - - -
PSEUDO Long et al. (2018a) 19.0 32.7 24.0 23.0 51.6 31.8 22.4 80.6 35.1 15.4 71.3 25.4
KERNEL Zhang and Koniusz (2018) 21.0 31.0 25.1 24.2 63.9 35.1 18.3 79.3 29.8 11.9 76.3 20.5
TVN Zhang et al. (2019a) 22.2 38.3 28.1 26.5 62.3 37.2 27.0 67.9 38.6 16.1 66.9 25.9
VZSL Wang et al. (2018) 15.2 23.8 18.6 17.1 37.1 23.8 22.3 77.5 34.6 8.4 75.5 15.1
DEM Zhang et al. (2017) 20.5 34.3 25.6 19.6 57.9 29.2 32.8 84.7 47.3 11.1 75.1 19.4
LESAE Liu et al. (2018b) 21.9 34.7 26.9 24.3 53.0 33.3 19.1 70.2 30.0 12.7 56.1 20.1
LESD Ding et al. (2017) 15.2 19.8 17.2 14.6 38.5 21.2 12.6 71.0 21.4 11.8 49.3 19.0
ICINESS Guo et al. (2018) - - 32.1 - - 41.8 - - 41.0 - - 25.4
DCN Liu et al. (2018a) 25.5 37.0 30.2 28.4 60.7 38.7 25.5 84.2 39.1 14.2 75.0 23.9
PSD-EN 31 36.7 33.6 34.0 57.0 42.6 40.9 72.2 52.2 26.5 38.4 31.3
PSD-AS 33.7 35.0 34.3 35.3 55.6 43.2 47.4 67.0 55.5 24.7 47.0 32.4
PSD-OS 34.3 39.7 36.8 38.6 53.1 44.7 47.0 70.0 56.2 28.0 42.3 33.7
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Fig. 3. The performance on different computations of attribute similarity.
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Fig. 4. The performance on different computations of one-hot attribute
similarity.

attribute similarity and PSD-OS for one-hot attribute similarity
can further improve the performances due to their classification
guidance and certainty encouragement.

4.3. Ablation Study

Different attribute similarity: In Eq. 6, we argue that <
f (as

i ), f (au
j ) > is better than < as

i , a
u
j > for computing the sim-

ilarity of attributes because the processed attributes are more
discriminative than their original form. To proof this argument,
we conduct experiments on four datasets by replacing the com-
putation of attribute similarity in Eq. 6 from < f (as

i ), f (au
j ) >

to < as
i , a

u
j >, and the results are recorded in Fig. 3 and Fig.

4. Form the two figures, it can be clearly discovered that the
performances on both ts and H are significantly improved by
employing the processed attributes, especially on AWA. To fur-
ther show the discriminative attributes after the procession of
deep network, we compute the attribute similarity matrices be-
fore and after the procession and show them in Fig. 5. It can be
clearly seen that the attributes after the deep network process
are more discriminative, which is reason for the better perfor-
mance of the proposed network.
Different network architectures: Our method exploits the
two-layer network architecture to project the attribute to visual
space and achieve state-of-the-art performance. However, it
is necessary to show its performance with other architectures
to investigate the importance of the network. In this experi-
ment, we replace the network with 1 layer (semantic→visual),
three layers (semantic→512→1024→visual), and four layers
(semantic→256→512→1024→visual), and record their perfor-
mance in Fig. 6. From this figure, it can be clear found that
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Fig. 5. The attribute similarity before and after the procession of the deep
network.
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Fig. 6. The performance on different network architectures for PSD-OS.

the two-layer architecture can achieve the best performance and
outperform the others by large margins. This phenomenon re-
veals the fact that the two-layer architecture is most suitable
for this model, and too few parameters can lead to under-fitting
while too many will cause over-fitting.

5. Conclusion

In this paper, we have proposed a deep GZSL network, which
utilizes the pseudo distribution of seen data on unseen classes to
solve the domain shift problem on seen classes. In the network,
three types of pseudo distributions including pseudo probabil-
ity, attribute similarity and one-hot attribute similarity, were
employed. In addition, to solve the hubness problem, the net-
work was designed to make inner product in visual space to
compute the pseudo probabilities. Extensive experiments on
four popular dataset were conducted. The results show the pro-
posed network can significantly improve the performance and
the one-hot attribute similarity can achieve best performance
due to its strong training guidance and certainty encourage-
ment.
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