Sean R. O'Neill
Diagenesis and burial history modeling of heterogeneous marginal marine to shoreface Paleocene glauconitic sandstones, Taranaki Basin, New Zealand
O'Neill, Sean R.; Jones, Stuart J.; Kamp, Peter J.J.
Abstract
Paleocene marginal marine to shoreface glauconitic sandstones (F-Sands) of the Farewell Formation from the Maui Field in Taranaki Basin, New Zealand, demonstrate a diagenetic evolution driven by major shifts in acidic pore-water composition, rate of burial, and clay-mineral authigenesis. Mechanical compaction is the principal porosity-reducing mechanism during the first 2500 m of burial of the F-Sands. Continued mechanical compaction with long-grain contacts, concavo-convex contacts, and deformed liable grains are common throughout the F-Sands. Late-stage flow of dissolved CO2 in the pore fluids of the Farewell Formation is thought to have been generated from thermal decarboxylation of coaly source rocks. The circulation of these CO2-rich fluids will have dissolved into undersaturated pore fluids and partially catalyzed dissolution of feldspar and quartz, producing ions for the precipitation of kaolinite and chlorite. Timing of the diagenetic reactions, as determined using paragenetic observations, fluid-inclusion analysis, and burial history modeling, suggests that the quartz cements formed at a late stage (> 100°C, corresponding to 0–7 Ma) and is consistent with the migration of hydrocarbons, and associated CO2, into the F-Sand reservoir. Significant secondary porosity is generated through the dissolution of feldspar, which is preserved due to late-stage of occurrence at close to present-day maximum burial. Dissolved solutes in the F-Sands sandstones are being preferentially precipitated in interbedded and surrounding fine-grained heterolithic siltstone to very fine-grained sandstone beds, leading to enhanced heterogeneity and preservation of secondary porosity. This study provides an improved understanding for diagenetic reconstruction of marginal marine to shoreface facies.
Citation
O'Neill, S. R., Jones, S. J., & Kamp, P. J. (2020). Diagenesis and burial history modeling of heterogeneous marginal marine to shoreface Paleocene glauconitic sandstones, Taranaki Basin, New Zealand. Journal of Sedimentary Research, 90(6), 651-668. https://doi.org/10.2110/jsr.2020.34
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 29, 2019 |
Online Publication Date | Jun 30, 2020 |
Publication Date | 2020-06 |
Deposit Date | Jul 2, 2020 |
Publicly Available Date | Jul 19, 2020 |
Journal | Journal of Sedimentary Research |
Print ISSN | 1527-1404 |
Publisher | Society for Sedimentary Geology (SEPM) |
Peer Reviewed | Peer Reviewed |
Volume | 90 |
Issue | 6 |
Pages | 651-668 |
DOI | https://doi.org/10.2110/jsr.2020.34 |
Public URL | https://durham-repository.worktribe.com/output/1261492 |
Files
Published Journal Article
(3.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately credited.
You might also like
Sedimentary Petrology
(2023)
Book
Interdependence between bacterial EPS and early grain coat development
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search