Professor Stefan Nielsen stefan.nielsen@durham.ac.uk
Professor
Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral).
Nielsen, S., Spagnuolo, E., Violay, M., & Di Toro, G. (2021). Thermal weakening friction during seismic slip experiments and models with heat sources and sinks. Journal of Geophysical Research. Solid Earth, 126(5), Article e2020JB020652. https://doi.org/10.1029/2020jb020652
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 30, 2021 |
Online Publication Date | Apr 2, 2021 |
Publication Date | 2021-05 |
Deposit Date | Apr 7, 2021 |
Publicly Available Date | May 20, 2021 |
Journal | Journal of Geophysical Research. Solid Earth |
Print ISSN | 2169-9313 |
Electronic ISSN | 2169-9356 |
Publisher | American Geophysical Union |
Peer Reviewed | Peer Reviewed |
Volume | 126 |
Issue | 5 |
Article Number | e2020JB020652 |
DOI | https://doi.org/10.1029/2020jb020652 |
Public URL | https://durham-repository.worktribe.com/output/1250173 |
Related Public URLs | https://onlinelibrary.wiley.com/share/author/KKFHNCXGQ23XJ6F7D3IX?target=10.1029/2020JB020652 |
Published Journal Article
(2.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2021. The Authors.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Fracture Energy and Breakdown Work During Earthquakes
(2023)
Journal Article
Frictional power dissipation in a seismic ancient fault
(2023)
Journal Article
Scaling Seismic Fault Thickness From the Laboratory to the Field
(2021)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search