Nolwenn Le Gall
In situ quantification of crystallisation kinetics 1 of plagioclase and clinopyroxene in basaltic magma: implications for lava flow
Le Gall, Nolwenn; Arzilli, Fabio; La Spina, Giuseppe; Polacci, Margherita; Cai, Biao; E. Hartley, Margaret; T. Vo, Nghia; C. Atwood, Robert; Di Genova, Danilo ; W LLewellin, Edward; R Burton, Mike; D Lee, Peter
Authors
Fabio Arzilli
Giuseppe La Spina
Margherita Polacci
Biao Cai
Margaret E. Hartley
Nghia T. Vo
Robert C. Atwood
Danilo Di Genova
Professor Edward Llewellin ed.llewellin@durham.ac.uk
Professor
Mike R Burton
Peter D Lee
Abstract
Crystallisation is a complex process that significantly affects the rheology of magma, and thus the flow dynamics during a volcanic eruption. For example, the evolution of crystal fraction, size and shape has a strong impact on the surface crust formation of a lava flow, and accessing such information is essential for accurate modelling of lava flow dynamics. To investigate the role of crystallisation kinetics on lava flow behaviour, we performed real-time, in situ synchrotron X-ray microtomography, studying the influence of temperature-time paths on the nucleation and growth of clinopyroxene and plagioclase in an oxidised, nominally anhydrous basaltic magma. Crystallisation experiments were performed at atmospheric pressure in air and temperatures from 1250 °C to 1100 °C, using a bespoke high-temperature resistance furnace. Depending on the cooling regime (single step versus continuous), two different crystal phases (either clinopyroxene or plagioclase) were produced, and we quantified their growth from both global and individual 3D texture analyses. The textural evolution of charges suggests that suppression of crystal nucleation is due to changes in the melt composition with increasing undercooling and time. Using existing viscosity models, we inferred the effect of crystals on the viscosity evolution of our crystal-bearing samples to trace changes in rheological behaviour during lava emplacement. We observe that under continuous cooling, both the onsets of the pāhoehoe-‘a‘ā transition and of non-Newtonian behaviour occur within a shorter time frame. With varying both temperature and time, we also either reproduced or approached the clinopyroxene and plagioclase phenocryst abundances and compositions of the Etna lava used as starting material, demonstrating that real-time synchrotron X-ray tomography is an ideal approach to unravel the final solidification history of basaltic lavas. This imaging technology has indeed the potential to provide input into lava flow models and hence our ability to forecast volcanic hazards.
Citation
Le Gall, N., Arzilli, F., La Spina, G., Polacci, M., Cai, B., E. Hartley, M., T. Vo, N., C. Atwood, R., Di Genova, D., W LLewellin, E., R Burton, M., & D Lee, P. (2021). In situ quantification of crystallisation kinetics 1 of plagioclase and clinopyroxene in basaltic magma: implications for lava flow. Earth and Planetary Science Letters, 568, Article 117016. https://doi.org/10.1016/j.epsl.2021.117016
Journal Article Type | Article |
---|---|
Acceptance Date | May 20, 2021 |
Online Publication Date | Jun 7, 2021 |
Publication Date | Aug 15, 2021 |
Deposit Date | May 28, 2021 |
Publicly Available Date | Jun 7, 2022 |
Journal | Earth and Planetary Science Letters |
Print ISSN | 0012-821X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 568 |
Article Number | 117016 |
DOI | https://doi.org/10.1016/j.epsl.2021.117016 |
Public URL | https://durham-repository.worktribe.com/output/1247461 |
Files
Accepted Journal Article
(10.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Banding in the Margins of Basaltic Dykes Indicates Pulsatory Propagation During Emplacement
(2024)
Journal Article
Bubble Formation in Magma
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search