Eleanor K. Ashworth
Autodetachment dynamics of 2-naphthoxide and implications for astrophysical anion abundance
Ashworth, Eleanor K.; Anstöter, Cate S.; Verlet, Jan R.R.; Bull, James N.
Authors
Abstract
Astrochemical modelling has proposed that 10% or more of interstellar carbon could be tied up as polycyclic aromatic hydrocarbon (PAH) molecules. Developing reliable models of the interstellar carbon lifecycle requires calibration data obtained through laboratory studies on relevant chemical and physical processes, including on the photo-induced and electron-induced dynamics of potential interstellar PAHs. Here, the excited state dynamics of the S1(ππ*) state of 2-naphthoxide are investigated using frequency-, angle-, and time-resolved photoelectron imaging. Frequency-resolved photoelectron spectra taken over the S1(ππ*) band reveal low electron kinetic energy structure consistent with an indirect, vibrational mode-specific electron detachment mechanism. Time-resolved photoelectron imaging using a pump photon energy tuned to the 0–0 transition of the S1(ππ*) band (hν = 2.70 eV) and a non-resonant probe photon provides the excited state autodetachment lifetime at τ = 130 ± 10 fs. There is no evidence for internal conversion to the ground electronic state or a dipole-bound state. These results imply that 2-naphthoxide has no resilience to photodestruction through the absorption of visible radiation resonant with the S1(ππ*) band, and that electron capture by the S1(ππ*) state, which is formally a shape resonance, is not a doorway state to a stable interstellar anion.
Citation
Ashworth, E. K., Anstöter, C. S., Verlet, J. R., & Bull, J. N. (2021). Autodetachment dynamics of 2-naphthoxide and implications for astrophysical anion abundance. Physical Chemistry Chemical Physics, 23(10), 5817-5823. https://doi.org/10.1039/d1cp00261a
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 2, 2021 |
Online Publication Date | Mar 3, 2021 |
Publication Date | Mar 14, 2021 |
Deposit Date | May 6, 2021 |
Publicly Available Date | Jun 23, 2021 |
Journal | Physical Chemistry Chemical Physics |
Print ISSN | 1463-9076 |
Electronic ISSN | 1463-9084 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 23 |
Issue | 10 |
Pages | 5817-5823 |
DOI | https://doi.org/10.1039/d1cp00261a |
Public URL | https://durham-repository.worktribe.com/output/1243030 |
Files
Published Journal Article
(2.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc/3.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence
You might also like
Predicting the increase in electron affinity of phenoxy upon fluorination
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search