Aude Lietard
Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study
Lietard, Aude; Verlet, Jan R.R.; Slimak, Stephen; Jordan, Kenneth D.
Authors
Abstract
The low-energy electron-scattering resonances of pyrene were characterized using experimental and computational methods. Experimentally, a two-dimensional photoelectron imaging of the pyrene anion was used to probe the dynamics of resonances over the first 4 eV of the continuum. Computationally, the energies and character of the anion states were determined using equation-of-motion coupled cluster calculations, while taking specific care to avoid the collapse onto discretized continuum levels, and an application of the pairing theorem. Our results are in good agreement with the predictions of electron-scattering calculations that include an offset and with the pyrene anion absorption spectrum in a glass matrix. Taken together, we offer an assignment of the first five electronic resonances of pyrene. Some of the population in the lowest-energy 2B1u resonance was observed to decay to the ground electronic state of the anion, while all other resonances decay by a direct autodetachment. The astronomical relevance of a ground-state electron capture proceeding via a low-energy resonance in pyrene is discussed.
Citation
Lietard, A., Verlet, J. R., Slimak, S., & Jordan, K. D. (2021). Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. The Journal of Physical Chemistry A, 125(32), 7004-7013. https://doi.org/10.1021/acs.jpca.1c05586
Journal Article Type | Article |
---|---|
Online Publication Date | Aug 9, 2021 |
Publication Date | 2021 |
Deposit Date | Aug 26, 2021 |
Publicly Available Date | Aug 9, 2022 |
Journal | The Journal of Physical Chemistry A |
Print ISSN | 1089-5639 |
Electronic ISSN | 1520-5215 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 125 |
Issue | 32 |
Pages | 7004-7013 |
DOI | https://doi.org/10.1021/acs.jpca.1c05586 |
Public URL | https://durham-repository.worktribe.com/output/1243021 |
Files
Accepted Journal Article
(1.1 Mb)
PDF
Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpca.1c05586
You might also like
Predicting the increase in electron affinity of phenoxy upon fluorination
(2024)
Journal Article
Spectroscopy and dynamics of the hydrated electron at the water/air interface
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search