Skip to main content

Research Repository

Advanced Search

Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations

Collaboration, Euclid; Knabenhans, M.; Stadel, J.; Potter, D.; Dakin, J.; Hannestad, S.; Tram, T.; Marelli, S.; Schneider, A.; Teyssier, R.; Fosalba, P.; Andreon, S.; Auricchio, N.; Baccigalupi, C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Battaglia, P.; Bender, R.; Biviano, A.; Bodendorf, C.; Bozzo, E.; Branchini, E.; Brescia, M.; Burigana, C.; Cabanac, R.; Camera, S.; Capobianco, V.; Cappi, A.; Carbone, C.; Carretero, J.; Carvalho, C.S.; Casas, R.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cledassou, R.; Colodro-Conde, C.; Congedo, G.; Conselice, C.J.; Conversi, L.; Copin, Y.; Corcione, L.; Coupon, J.; Courtois, H.M.; Da Silva, A.; de la Torre, S.; Di Ferdinando, D.; Duncan, C.A.J.; Dupac, X.; Fabbian, G.; Farrens, S.; Ferreira, P.G.; Finelli, F.; Frailis, M.; Franceschi, E.; Galeotta, S.; Garilli, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio, J.; Grupp, F.; Guzzo, L.; Holmes, W.; Hormuth, F.; Israel, H.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kirkpatrick, C....

Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations Thumbnail


Authors

Euclid Collaboration

M. Knabenhans

J. Stadel

D. Potter

J. Dakin

S. Hannestad

T. Tram

S. Marelli

A. Schneider

R. Teyssier

P. Fosalba

S. Andreon

N. Auricchio

C. Baccigalupi

A. Balaguera-Antolínez

M. Baldi

S. Bardelli

P. Battaglia

R. Bender

A. Biviano

C. Bodendorf

E. Bozzo

E. Branchini

M. Brescia

C. Burigana

R. Cabanac

S. Camera

V. Capobianco

A. Cappi

C. Carbone

J. Carretero

C.S. Carvalho

R. Casas

S. Casas

M. Castellano

G. Castignani

S. Cavuoti

R. Cledassou

C. Colodro-Conde

G. Congedo

C.J. Conselice

L. Conversi

Y. Copin

L. Corcione

J. Coupon

H.M. Courtois

A. Da Silva

S. de la Torre

D. Di Ferdinando

C.A.J. Duncan

X. Dupac

G. Fabbian

S. Farrens

P.G. Ferreira

F. Finelli

M. Frailis

E. Franceschi

S. Galeotta

B. Garilli

C. Giocoli

G. Gozaliasl

J. Graciá-Carpio

F. Grupp

L. Guzzo

W. Holmes

F. Hormuth

H. Israel

K. Jahnke

E. Keihanen

S. Kermiche

C.C. Kirkpatrick

B. Kubik

M. Kunz

H. Kurki-Suonio

S. Ligori

P.B. Lilje

I. Lloro

D. Maino

O. Marggraf

K. Markovic

N. Martinet

F. Marulli

N. Mauri

S. Maurogordato

E. Medinaceli

M. Meneghetti

B. Metcalf

G. Meylan

M. Moresco

B. Morin

L. Moscardini

E. Munari

C. Neissner

S.M. Niemi

C. Padilla

S. Paltani

F. Pasian

L. Patrizii

V. Pettorino

S. Pires

G. Polenta

M. Poncet

F. Raison

A. Renzi

J. Rhodes

G. Riccio

E. Romelli

M. Roncarelli

R. Saglia

A.G. Sánchez

D. Sapone

P. Schneider

V. Scottez

A. Secroun

S. Serrano

C. Sirignano

G. Sirri

L. Stanco

F. Sureau

P. Tallada Crespí

A.N. Taylor

M. Tenti

I. Tereno

R. Toledo-Moreo

F. Torradeflot

L. Valenziano

J. Valiviita

T. Vassallo

M. Viel

Y. Wang

N. Welikala

L. Whittaker

A. Zacchei

E. Zucca



Abstract

We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. 2 per cent level accurate emulation is now supported in the eight-dimensional parameter space of w0waCDM+∑mν models between redshift z = 0 and z = 3 for spatial scales within the range 0.01hMpc−1≤k≤10hMpc−1⁠. In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (i) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy, and the metric field, (ii) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (iii) we run over 250 high-resolution simulations with 30003 particles in boxes of 1(h−1 Gpc)3 volumes based on paired-and-fixed initial conditions, and (iv) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter wa significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors such as HALOFIT, HMCode, and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of 1 per cent or better for 0.01hMpc−1≤k≤10hMpc−1 and z ≤ 3 compared to high-resolution dark-matter-only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2.

Citation

Collaboration, E., Knabenhans, M., Stadel, J., Potter, D., Dakin, J., Hannestad, S., Tram, T., Marelli, S., Schneider, A., Teyssier, R., Fosalba, P., Andreon, S., Auricchio, N., Baccigalupi, C., Balaguera-Antolínez, A., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Biviano, A., …Zucca, E. (2021). Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 505(2), 2840-2869. https://doi.org/10.1093/mnras/stab1366

Journal Article Type Article
Acceptance Date May 2, 2021
Online Publication Date May 14, 2021
Publication Date 2021-08
Deposit Date Sep 29, 2021
Publicly Available Date Nov 16, 2021
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 505
Issue 2
Pages 2840-2869
DOI https://doi.org/10.1093/mnras/stab1366
Public URL https://durham-repository.worktribe.com/output/1234221
Publisher URL https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.2840E

Files

Published Journal Article (26.6 Mb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2021 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.






You might also like



Downloadable Citations