Euclid Collaboration
Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations
Collaboration, Euclid; Knabenhans, M.; Stadel, J.; Potter, D.; Dakin, J.; Hannestad, S.; Tram, T.; Marelli, S.; Schneider, A.; Teyssier, R.; Fosalba, P.; Andreon, S.; Auricchio, N.; Baccigalupi, C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Battaglia, P.; Bender, R.; Biviano, A.; Bodendorf, C.; Bozzo, E.; Branchini, E.; Brescia, M.; Burigana, C.; Cabanac, R.; Camera, S.; Capobianco, V.; Cappi, A.; Carbone, C.; Carretero, J.; Carvalho, C.S.; Casas, R.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cledassou, R.; Colodro-Conde, C.; Congedo, G.; Conselice, C.J.; Conversi, L.; Copin, Y.; Corcione, L.; Coupon, J.; Courtois, H.M.; Da Silva, A.; de la Torre, S.; Di Ferdinando, D.; Duncan, C.A.J.; Dupac, X.; Fabbian, G.; Farrens, S.; Ferreira, P.G.; Finelli, F.; Frailis, M.; Franceschi, E.; Galeotta, S.; Garilli, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio, J.; Grupp, F.; Guzzo, L.; Holmes, W.; Hormuth, F.; Israel, H.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kirkpatrick, C....
Authors
M. Knabenhans
J. Stadel
D. Potter
J. Dakin
S. Hannestad
T. Tram
S. Marelli
A. Schneider
R. Teyssier
P. Fosalba
S. Andreon
N. Auricchio
C. Baccigalupi
A. Balaguera-Antolínez
M. Baldi
S. Bardelli
P. Battaglia
R. Bender
A. Biviano
C. Bodendorf
E. Bozzo
E. Branchini
M. Brescia
C. Burigana
R. Cabanac
S. Camera
V. Capobianco
A. Cappi
C. Carbone
J. Carretero
C.S. Carvalho
R. Casas
S. Casas
M. Castellano
G. Castignani
S. Cavuoti
R. Cledassou
C. Colodro-Conde
G. Congedo
C.J. Conselice
L. Conversi
Y. Copin
L. Corcione
J. Coupon
H.M. Courtois
A. Da Silva
S. de la Torre
D. Di Ferdinando
C.A.J. Duncan
X. Dupac
G. Fabbian
S. Farrens
P.G. Ferreira
F. Finelli
M. Frailis
E. Franceschi
S. Galeotta
B. Garilli
C. Giocoli
G. Gozaliasl
J. Graciá-Carpio
F. Grupp
L. Guzzo
W. Holmes
F. Hormuth
H. Israel
K. Jahnke
E. Keihanen
S. Kermiche
C.C. Kirkpatrick
B. Kubik
M. Kunz
H. Kurki-Suonio
S. Ligori
P.B. Lilje
I. Lloro
D. Maino
O. Marggraf
K. Markovic
N. Martinet
F. Marulli
Professor Richard Massey r.j.massey@durham.ac.uk
Professor
N. Mauri
S. Maurogordato
E. Medinaceli
M. Meneghetti
B. Metcalf
G. Meylan
M. Moresco
B. Morin
L. Moscardini
E. Munari
C. Neissner
S.M. Niemi
C. Padilla
S. Paltani
F. Pasian
L. Patrizii
V. Pettorino
S. Pires
G. Polenta
M. Poncet
F. Raison
A. Renzi
J. Rhodes
G. Riccio
E. Romelli
M. Roncarelli
R. Saglia
A.G. Sánchez
D. Sapone
P. Schneider
V. Scottez
A. Secroun
S. Serrano
C. Sirignano
G. Sirri
L. Stanco
F. Sureau
P. Tallada Crespí
A.N. Taylor
M. Tenti
I. Tereno
R. Toledo-Moreo
F. Torradeflot
L. Valenziano
J. Valiviita
T. Vassallo
M. Viel
Y. Wang
N. Welikala
L. Whittaker
A. Zacchei
E. Zucca
Abstract
We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. 2 per cent level accurate emulation is now supported in the eight-dimensional parameter space of w0waCDM+∑mν models between redshift z = 0 and z = 3 for spatial scales within the range 0.01hMpc−1≤k≤10hMpc−1. In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (i) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy, and the metric field, (ii) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (iii) we run over 250 high-resolution simulations with 30003 particles in boxes of 1(h−1 Gpc)3 volumes based on paired-and-fixed initial conditions, and (iv) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter wa significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors such as HALOFIT, HMCode, and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of 1 per cent or better for 0.01hMpc−1≤k≤10hMpc−1 and z ≤ 3 compared to high-resolution dark-matter-only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2.
Citation
Collaboration, E., Knabenhans, M., Stadel, J., Potter, D., Dakin, J., Hannestad, S., Tram, T., Marelli, S., Schneider, A., Teyssier, R., Fosalba, P., Andreon, S., Auricchio, N., Baccigalupi, C., Balaguera-Antolínez, A., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Biviano, A., …Zucca, E. (2021). Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 505(2), 2840-2869. https://doi.org/10.1093/mnras/stab1366
Journal Article Type | Article |
---|---|
Acceptance Date | May 2, 2021 |
Online Publication Date | May 14, 2021 |
Publication Date | 2021-08 |
Deposit Date | Sep 29, 2021 |
Publicly Available Date | Nov 16, 2021 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 505 |
Issue | 2 |
Pages | 2840-2869 |
DOI | https://doi.org/10.1093/mnras/stab1366 |
Public URL | https://durham-repository.worktribe.com/output/1234221 |
Publisher URL | https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.2840E |
Files
Published Journal Article
(26.6 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2021 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
RXJ0437+00: constraining dark matter with exotic gravitational lenses
(2023)
Journal Article
Abell 1201: detection of an ultramassive black hole in a strong gravitational lens
(2023)
Journal Article
PyAutoGalaxy: Open-Source Multiwavelength Galaxy Structure & Morphology
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search