Oleksiy Klurman
On the orbits of multiplicative pairs
Klurman, Oleksiy; Mangerel, Alexander P.
Abstract
We characterize all pairs of completely multiplicative functions
fg:N→T, where T denotes the unit circle, such that
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
{(f(n),g(n+1))}n≥1 ≠T×T.
In so doing, we settle an old conjecture of Zoltán Daróczy and Imre Kátai.
Citation
Klurman, O., & Mangerel, A. P. (2020). On the orbits of multiplicative pairs. Algebra & Number Theory, 14(1), 155–189. https://doi.org/10.2140/ant.2020.14.155
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 5, 2019 |
Publication Date | Mar 15, 2020 |
Deposit Date | Oct 20, 2021 |
Journal | Algebra & Number Theory |
Print ISSN | 1937-0652 |
Electronic ISSN | 1944-7833 |
Publisher | Mathematical Sciences Publishers (MSP) |
Volume | 14 |
Issue | 1 |
Pages | 155–189 |
DOI | https://doi.org/10.2140/ant.2020.14.155 |
Public URL | https://durham-repository.worktribe.com/output/1233925 |
You might also like
On Equal Consecutive Values of Multiplicative Functions
(2024)
Journal Article
A Goldbach-type problem for the Liouville function
(2024)
Journal Article
Large sums of high‐order characters
(2023)
Journal Article
Three conjectures about character sums
(2023)
Journal Article
Beyond the Erdős discrepancy problem in function fields
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search