Ivette Raices Cruz
A robust Bayesian bias-adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis
Raices Cruz, Ivette; Troffaes, Matthias C.M.; Lindström, Johan; Sahlin, Ullrika
Authors
Abstract
Meta-analysis is a statistical method used in evidence synthesis for combining, analyzing and summarizing studies that have the same target endpoint and aims to derive a pooled quantitative estimate using fixed and random effects models or network models. Differences among included studies depend on variations in target populations (i.e. heterogeneity) and variations in study quality due to study design and execution (i.e. bias). The risk of bias is usually assessed qualitatively using critical appraisal, and quantitative bias analysis can be used to evaluate the influence of bias on the quantity of interest. We propose a way to consider ignorance or ambiguity in how to quantify bias terms in a bias analysis by characterizing bias with imprecision (as bounds on probability) and use robust Bayesian analysis to estimate the overall effect. Robust Bayesian analysis is here seen as Bayesian updating performed over a set of coherent probability distributions, where the set emerges from a set of bias terms. We show how the set of bias terms can be specified based on judgments on the relative magnitude of biases (i.e., low, unclear and high risk of bias) in one or several domains of the Cochrane’s risk of bias table. For illustration, we apply a robust Bayesian bias-adjusted random effects model to an already published meta-analysis on the effect of Rituximab for rheumatoid arthritis from the Cochrane Database of Systematic Reviews.
Citation
Raices Cruz, I., Troffaes, M. C., Lindström, J., & Sahlin, U. (2022). A robust Bayesian bias-adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis. Statistics in Medicine, 41(17), 3365-3379. https://doi.org/10.1002/sim.9422
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 12, 2022 |
Online Publication Date | Apr 29, 2022 |
Publication Date | Jul 30, 2022 |
Deposit Date | Oct 1, 2021 |
Publicly Available Date | May 3, 2022 |
Journal | Statistics in Medicine |
Print ISSN | 0277-6715 |
Electronic ISSN | 1097-0258 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 41 |
Issue | 17 |
Pages | 3365-3379 |
DOI | https://doi.org/10.1002/sim.9422 |
Public URL | https://durham-repository.worktribe.com/output/1232603 |
Related Public URLs | https://arxiv.org/abs/2204.10645 |
Files
Published Journal Article
(1.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2022 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
You might also like
Regret-based budgeted decision rules under severe uncertainty
(2024)
Journal Article
A constructive theory for conditional lower previsions only using rational valued probability mass functions with finite support
(2023)
Presentation / Conference Contribution
Using probability bounding to improve decision making for offshore wind planning in industry
(2023)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search