Professor Steve Abel s.a.abel@durham.ac.uk
Professor
Professor Steve Abel s.a.abel@durham.ac.uk
Professor
Professor Michael Spannowsky michael.spannowsky@durham.ac.uk
Director
We design and implement a quantum annealing simulation platform to observe and study dynamical processes in quantum field theory (QFT). Our approach encodes the field theory as an Ising model, which is then solved by a quantum annealer. As a proof of concept, we encode a scalar field theory and measure the probability for it to tunnel from the false vacuum to the true vacuum for various tunneling times, vacuum displacements, and potential profiles. The results are in accord with those predicted theoretically, showing that a quantum annealer is a promising platform for encoding QFTs. This is the first time it has been possible to measure instanton processes across a freely chosen QFT energy barrier. We argue that this novel and flexible method to study the dynamics of quantum systems has potential application to many field theories of interest. Measurements of the dynamical behavior of such encoded field theories are independent of theoretical calculations and can be used to infer their properties without being limited by the availability of suitable perturbative or nonperturbative computational methods. Soon, measurements using such a quantum annealing simulation platform could therefore be used to improve theoretical and computational methods conceptually and may enable the measurement and detailed study of previously unobserved quantum phenomena.
Abel, S., & Spannowsky, M. (2021). Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum, 2(1), Article 010349. https://doi.org/10.1103/prxquantum.2.010349
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 22, 2021 |
Online Publication Date | Mar 24, 2021 |
Publication Date | 2021-05 |
Deposit Date | Oct 27, 2021 |
Publicly Available Date | Dec 2, 2021 |
Journal | PRX Quantum |
Electronic ISSN | 2691-3399 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 2 |
Issue | 1 |
Article Number | 010349 |
DOI | https://doi.org/10.1103/prxquantum.2.010349 |
Public URL | https://durham-repository.worktribe.com/output/1227749 |
Published Journal Article (Advance online version)
(1.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Effective limits on single scalar extensions in the light of recent LHC data
(2023)
Journal Article
Quantum fitting framework applied to effective field theories
(2023)
Journal Article
Quantum optimization of complex systems with a quantum annealer
(2022)
Journal Article
Quantum walk approach to simulating parton showers
(2022)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search