Skip to main content

Research Repository

Advanced Search

Euclid preparation XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models

Bretonnière, H.; Huertas-Company, M.; Boucaud, A.; Lanusse, F.; Jullo, E.; Merlin, E.; Tuccillo, D.; Castellano, M.; Brinchmann, J.; Conselice, C.J.; Dole, H.; Cabanac, R.; Courtois, H.M.; Castander, F.J.; Duc, P.A.; Fosalba, P.; Guinet, D.; Kruk, S.; Kuchner, U.; Serrano, S.; Soubrie, E.; Tramacere, A.; Wang, L.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C.A.J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S.V.H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.;...

Euclid preparation XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models Thumbnail


Authors

H. Bretonnière

M. Huertas-Company

A. Boucaud

F. Lanusse

E. Jullo

E. Merlin

D. Tuccillo

M. Castellano

J. Brinchmann

C.J. Conselice

H. Dole

R. Cabanac

H.M. Courtois

F.J. Castander

P.A. Duc

P. Fosalba

D. Guinet

S. Kruk

U. Kuchner

S. Serrano

E. Soubrie

A. Tramacere

L. Wang

A. Amara

N. Auricchio

R. Bender

C. Bodendorf

D. Bonino

E. Branchini

S. Brau-Nogue

M. Brescia

V. Capobianco

C. Carbone

J. Carretero

S. Cavuoti

A. Cimatti

R. Cledassou

G. Congedo

L. Conversi

Y. Copin

L. Corcione

A. Costille

M. Cropper

A. Da Silva

H. Degaudenzi

M. Douspis

F. Dubath

C.A.J. Duncan

X. Dupac

S. Dusini

S. Farrens

S. Ferriol

M. Frailis

E. Franceschi

M. Fumana

B. Garilli

W. Gillard

B. Gillis

C. Giocoli

A. Grazian

F. Grupp

S.V.H. Haugan

W. Holmes

F. Hormuth

P. Hudelot

K. Jahnke

S. Kermiche

A. Kiessling

M. Kilbinger

T. Kitching

R. Kohley

M. Kümmel

M. Kunz

H. Kurki-Suonio

S. Ligori

P.B. Lilje

I. Lloro

E. Maiorano

O. Mansutti

O. Marggraf

K. Markovic

F. Marulli

S. Maurogordato

M. Melchior

M. Meneghetti

G. Meylan

M. Moresco

B. Morin

L. Moscardini

E. Munari

R. Nakajima

S.M. Niemi

C. Padilla

S. Paltani

F. Pasian

K. Pedersen

V. Pettorino

S. Pires

M. Poncet

L. Popa

L. Pozzetti

F. Raison

R. Rebolo

J. Rhodes

M. Roncarelli

E. Rossetti

R. Saglia

P. Schneider

A. Secroun

G. Seidel

C. Sirignano

G. Sirri

L. Stanco

J.-L. Starck

P. Tallada-Crespí

A.N. Taylor

I. Tereno

R. Toledo-Moreo

F. Torradeflot

E.A. Valentijn

L. Valenziano

Y. Wang

N. Welikala

J. Weller

G. Zamorani

J. Zoubian

M. Baldi

S. Bardelli

S. Camera

R. Farinelli

E. Medinaceli

S. Mei

G. Polenta

E. Romelli

M. Tenti

T. Vassallo

A. Zacchei

E. Zucca

C. Baccigalupi

A. Balaguera-Antolínez

A. Biviano

S. Borgani

E. Bozzo

C. Burigana

A. Cappi

C.S. Carvalho

S. Casas

G. Castignani

C. Colodro-Conde

J. Coupon

S. de la Torre

M. Fabricius

M. Farina

P.G. Ferreira

P. Flose-Reimberg

S. Fotopoulou

S. Galeotta

K. Ganga

J. Garcia-Bellido

E. Gaztanaga

G. Gozaliasl

I.M. Hook

B. Joachimi

V. Kansal

A. Kashlinsky

E. Keihanen

C.C. Kirkpatrick

V. Lindholm

G. Mainetti

D. Maino

R. Maoli

M. Martinelli

N. Martinet

H.J. McCracken

R.B. Metcalf

G. Morgante

N. Morisset

A. Nucita

L. Patrizii

D. Potter

A. Renzi

G. Riccio

A.G. Sánchez

D. Sapone

M. Schirmer

M. Schultheis

V. Scottez

E. Sefusatti

R. Teyssier

I. Tutusaus

J. Valiviita

M. Viel

L. Whittaker

J.H. Knapen



Abstract

We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec−2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec−2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M⊙ (resp. 109.6 M⊙) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.

Citation

Bretonnière, H., Huertas-Company, M., Boucaud, A., Lanusse, F., Jullo, E., Merlin, E., Tuccillo, D., Castellano, M., Brinchmann, J., Conselice, C., Dole, H., Cabanac, R., Courtois, H., Castander, F., Duc, P., Fosalba, P., Guinet, D., Kruk, S., Kuchner, U., Serrano, S., …Knapen, J. (2022). Euclid preparation XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models. Astronomy & Astrophysics, 657, Article A90. https://doi.org/10.1051/0004-6361/202141393

Journal Article Type Article
Acceptance Date Oct 21, 2021
Publication Date 2022-01
Deposit Date Feb 18, 2022
Publicly Available Date Feb 18, 2022
Journal Astronomy and astrophysics.
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 657
Article Number A90
DOI https://doi.org/10.1051/0004-6361/202141393
Public URL https://durham-repository.worktribe.com/output/1213034

Files

Published Journal Article (3.2 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.






You might also like



Downloadable Citations