H. Bretonnière
Euclid preparation XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models
Bretonnière, H.; Huertas-Company, M.; Boucaud, A.; Lanusse, F.; Jullo, E.; Merlin, E.; Tuccillo, D.; Castellano, M.; Brinchmann, J.; Conselice, C.J.; Dole, H.; Cabanac, R.; Courtois, H.M.; Castander, F.J.; Duc, P.A.; Fosalba, P.; Guinet, D.; Kruk, S.; Kuchner, U.; Serrano, S.; Soubrie, E.; Tramacere, A.; Wang, L.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C.A.J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S.V.H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.;...
Authors
M. Huertas-Company
A. Boucaud
F. Lanusse
E. Jullo
E. Merlin
D. Tuccillo
M. Castellano
J. Brinchmann
C.J. Conselice
H. Dole
R. Cabanac
H.M. Courtois
F.J. Castander
P.A. Duc
P. Fosalba
D. Guinet
S. Kruk
U. Kuchner
S. Serrano
E. Soubrie
A. Tramacere
L. Wang
A. Amara
N. Auricchio
R. Bender
C. Bodendorf
D. Bonino
E. Branchini
S. Brau-Nogue
M. Brescia
V. Capobianco
C. Carbone
J. Carretero
S. Cavuoti
A. Cimatti
R. Cledassou
G. Congedo
L. Conversi
Y. Copin
L. Corcione
A. Costille
M. Cropper
A. Da Silva
H. Degaudenzi
M. Douspis
F. Dubath
C.A.J. Duncan
X. Dupac
S. Dusini
S. Farrens
S. Ferriol
M. Frailis
E. Franceschi
M. Fumana
B. Garilli
W. Gillard
B. Gillis
C. Giocoli
A. Grazian
F. Grupp
S.V.H. Haugan
W. Holmes
F. Hormuth
P. Hudelot
K. Jahnke
S. Kermiche
A. Kiessling
M. Kilbinger
T. Kitching
R. Kohley
M. Kümmel
M. Kunz
H. Kurki-Suonio
S. Ligori
P.B. Lilje
I. Lloro
E. Maiorano
O. Mansutti
O. Marggraf
K. Markovic
F. Marulli
Professor Richard Massey r.j.massey@durham.ac.uk
Professor
S. Maurogordato
M. Melchior
M. Meneghetti
G. Meylan
M. Moresco
B. Morin
L. Moscardini
E. Munari
R. Nakajima
S.M. Niemi
C. Padilla
S. Paltani
F. Pasian
K. Pedersen
V. Pettorino
S. Pires
M. Poncet
L. Popa
L. Pozzetti
F. Raison
R. Rebolo
J. Rhodes
M. Roncarelli
E. Rossetti
R. Saglia
P. Schneider
A. Secroun
G. Seidel
C. Sirignano
G. Sirri
L. Stanco
J.-L. Starck
P. Tallada-Crespí
A.N. Taylor
I. Tereno
R. Toledo-Moreo
F. Torradeflot
E.A. Valentijn
L. Valenziano
Y. Wang
N. Welikala
J. Weller
G. Zamorani
J. Zoubian
M. Baldi
S. Bardelli
S. Camera
R. Farinelli
E. Medinaceli
S. Mei
G. Polenta
E. Romelli
M. Tenti
T. Vassallo
A. Zacchei
E. Zucca
C. Baccigalupi
A. Balaguera-Antolínez
A. Biviano
S. Borgani
E. Bozzo
C. Burigana
A. Cappi
C.S. Carvalho
S. Casas
G. Castignani
C. Colodro-Conde
J. Coupon
S. de la Torre
M. Fabricius
M. Farina
P.G. Ferreira
P. Flose-Reimberg
S. Fotopoulou
S. Galeotta
K. Ganga
J. Garcia-Bellido
E. Gaztanaga
G. Gozaliasl
I.M. Hook
B. Joachimi
V. Kansal
A. Kashlinsky
E. Keihanen
C.C. Kirkpatrick
V. Lindholm
G. Mainetti
D. Maino
R. Maoli
M. Martinelli
N. Martinet
H.J. McCracken
R.B. Metcalf
G. Morgante
N. Morisset
James Nightingale james.w.nightingale@durham.ac.uk
Academic Visitor
A. Nucita
L. Patrizii
D. Potter
A. Renzi
G. Riccio
A.G. Sánchez
D. Sapone
M. Schirmer
M. Schultheis
V. Scottez
E. Sefusatti
R. Teyssier
I. Tutusaus
J. Valiviita
M. Viel
L. Whittaker
J.H. Knapen
Abstract
We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec−2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec−2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M⊙ (resp. 109.6 M⊙) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
Citation
Bretonnière, H., Huertas-Company, M., Boucaud, A., Lanusse, F., Jullo, E., Merlin, E., Tuccillo, D., Castellano, M., Brinchmann, J., Conselice, C., Dole, H., Cabanac, R., Courtois, H., Castander, F., Duc, P., Fosalba, P., Guinet, D., Kruk, S., Kuchner, U., Serrano, S., …Knapen, J. (2022). Euclid preparation XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models. Astronomy & Astrophysics, 657, Article A90. https://doi.org/10.1051/0004-6361/202141393
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 21, 2021 |
Publication Date | 2022-01 |
Deposit Date | Feb 18, 2022 |
Publicly Available Date | Feb 18, 2022 |
Journal | Astronomy and astrophysics. |
Print ISSN | 0004-6361 |
Electronic ISSN | 1432-0746 |
Publisher | EDP Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 657 |
Article Number | A90 |
DOI | https://doi.org/10.1051/0004-6361/202141393 |
Public URL | https://durham-repository.worktribe.com/output/1213034 |
Files
Published Journal Article
(3.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
RXJ0437+00: constraining dark matter with exotic gravitational lenses
(2023)
Journal Article
Abell 1201: detection of an ultramassive black hole in a strong gravitational lens
(2023)
Journal Article
PyAutoGalaxy: Open-Source Multiwavelength Galaxy Structure & Morphology
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search