Gary Yu
All-atom simulations of bent liquid crystal dimers: the twist-bend nematic phase and insights into conformational chirality
Yu, Gary; Wilson, Mark Richard
Abstract
The liquid crystal dimer 1,7-bis-4-(4′-cyanobiphenyl)heptane (CB7CB) is known to exhibit a nematic–nematic phase transition, with the lower temperature phase identified as the twist-bend nematic (NTB) phase. Despite the achiral nature of the mesogen, the NTB phase demonstrates emergent chirality through the spontaneous formation of a helical structure. We present extensive molecular dynamics simulations of CB7CB using an all-atom force field. The NTB phase is observed in this model and, upon heating, shows phase transitions into the nematic (N) and isotropic phases. The simulated NTB phase returns a pitch of 8.35 nm and a conical tilt angle of 29°. Analysis of the bend angle between the mesogenic units reveals an average angle of 127°, which is invariant to the simulated phase. We have calculated distributions of the chirality order parameter, χ, for the ensemble of conformers in the NTB and N phases. These distributions elucidate that CB7CB is statistically achiral but can adopt chiral conformers with no preference for a specific handedness. Furthermore, there is no change in the extent of conformational chirality between the NTB and N phases. Using single-molecule stochastic dynamics simulations in the gas phase, we study the dimer series CBnCB (where n = 6, 7, 8 or 9) and CBX(CH2)5YCB (where X/Y = CH2, O or S) in terms of the bend angle and conformational chirality. We confirm that the bent molecular shape determines the ability of a dimer to exhibit the NTB phase rather than its potential to assume chiral conformers; as |χ|max increases with the spacer length, but the even-membered dimers have a linear shape in contrast to the bent nature of dimers with spacers of odd parity. For CBX(CH2)5YCB, it is found that |χ|max increases as the bend angle of the dimer decreases, while the flexibility of the dimers remains unchanged through the series.
Citation
Yu, G., & Wilson, M. R. (2022). All-atom simulations of bent liquid crystal dimers: the twist-bend nematic phase and insights into conformational chirality. Soft Matter, 18(15), 3087-3096. https://doi.org/10.1039/d2sm00291d
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 24, 2022 |
Online Publication Date | Mar 25, 2022 |
Publication Date | Apr 21, 2022 |
Deposit Date | Mar 4, 2022 |
Publicly Available Date | May 10, 2022 |
Journal | Soft Matter |
Print ISSN | 1744-683X |
Electronic ISSN | 1744-6848 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 18 |
Issue | 15 |
Pages | 3087-3096 |
DOI | https://doi.org/10.1039/d2sm00291d |
Public URL | https://durham-repository.worktribe.com/output/1212196 |
Files
Published Journal Article
(4.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/3.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search