JS Johnson
Gaussian process emulation for second-order Monte Carlo simulations
Johnson, JS; Gosling, JP; Kennedy, MC
Citation
Johnson, J., Gosling, J., & Kennedy, M. (2010). Gaussian process emulation for second-order Monte Carlo simulations. Journal of Statistical Planning and Inference, 141, 1838-48
Journal Article Type | Article |
---|---|
Publication Date | 2010 |
Deposit Date | May 4, 2022 |
Journal | Journal of Statistical Planning and Inference |
Print ISSN | 0378-3758 |
Electronic ISSN | 1873-1171 |
Publisher | Elsevier |
Volume | 141 |
Pages | 1838-48 |
Public URL | https://durham-repository.worktribe.com/output/1207285 |
You might also like
A Bayesian Computer Model Analysis of Robust Bayesian Analyses
(2022)
Journal Article
Gaussian process modeling of heterogeneity and discontinuities using Voronoi tessellations
(2021)
Journal Article
Potential of ToxCast data in the safety assessment of food chemicals
(2020)
Journal Article
Artificial Intelligence for chemical risk assessment
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search