Dr Jack Shotton jack.g.shotton@durham.ac.uk
Associate Professor
Generic local deformation rings when l≠p
Shotton, Jack
Authors
Abstract
We determine the local deformation rings of sufficiently generic mod l representations of the Galois group of a p-adic field, when l≠p, relating them to the space of q-power-stable semisimple conjugacy classes in the dual group. As a consequence, we give a local proof of the l≠p Breuil–Mézard conjecture of the author, in the tame case.
Citation
Shotton, J. (2022). Generic local deformation rings when l≠p. Compositio Mathematica, 158(4), 721-749. https://doi.org/10.1112/s0010437x22007461
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 18, 2021 |
Online Publication Date | Jun 3, 2022 |
Publication Date | 2022-04 |
Deposit Date | Jul 26, 2022 |
Publicly Available Date | Jul 26, 2022 |
Journal | Compositio Mathematica |
Print ISSN | 0010-437X |
Electronic ISSN | 1570-5846 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 158 |
Issue | 4 |
Pages | 721-749 |
DOI | https://doi.org/10.1112/s0010437x22007461 |
Public URL | https://durham-repository.worktribe.com/output/1199431 |
Files
Published Journal Article
(746 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original article is properly cited. Compositio Mathematica is © Foundation Compositio Mathematica.
You might also like
Ihara’s Lemma for Shimura curves over totally real fields via patching
(2020)
Journal Article
The category of finitely presented smooth mod p representations of GL_2(F)
(2020)
Journal Article
The Breuil–Mézard conjecture when l≠p
(2017)
Journal Article
Local deformation rings for GL2 and a Breuil–Mézard conjecture when l≠p
(2016)
Journal Article
Irreducible components of the moduli space of Langlands parameters
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search