Dr Sabine Boegli sabine.boegli@durham.ac.uk
Associate Professor
We study the spectrum of the Robin Laplacian with a complex Robin parameter α on a bounded Lipschitz domain Ω. We start by establishing a number of properties of the corresponding operator, such as generation properties, analytic dependence of the eigenvalues and eigenspaces on α∈C, and basis properties of the eigenfunctions. Our focus, however, is on bounds and asymptotics for the eigenvalues as functions of α: we start by providing estimates on the numerical range of the associated operator, which lead to new eigenvalue bounds even in the case α∈R. For the asymptotics of the eigenvalues as α→∞ in C, in place of the min–max characterisation of the eigenvalues and Dirichlet–Neumann bracketing techniques commonly used in the real case, we exploit the duality between the eigenvalues of the Robin Laplacian and the eigenvalues of the Dirichlet-to-Neumann map. We use this to show that along every analytic curve of eigenvalues, the Robin eigenvalues either diverge absolutely in C or converge to the Dirichlet spectrum, as well as to classify all possible points of accumulation of Robin eigenvalues for large α. We also give a comprehensive treatment of the special cases where Ω is an interval, a hyperrectangle or a ball. This leads to the conjecture that on a general smooth domain in dimension d≥2 all eigenvalues converge to the Dirichlet spectrum if Reα remains bounded from below as α→∞, while if Reα→−∞, then there is a family of divergent eigenvalue curves, each of which behaves asymptotically like −α2.
Boegli, S., Kennedy, J. B., & Lang, R. (2022). On the eigenvalues of the Robin Laplacian with a complex parameter. Analysis and Mathematical Physics, 12(1), Article 39. https://doi.org/10.1007/s13324-022-00646-0
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 9, 2022 |
Online Publication Date | Jan 29, 2022 |
Publication Date | 2022 |
Deposit Date | Oct 27, 2022 |
Publicly Available Date | Jan 29, 2023 |
Journal | Analysis and Mathematical Physics |
Print ISSN | 1664-2368 |
Electronic ISSN | 1664-235X |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Issue | 1 |
Article Number | 39 |
DOI | https://doi.org/10.1007/s13324-022-00646-0 |
Public URL | https://durham-repository.worktribe.com/output/1187376 |
Accepted Journal Article
(662 Kb)
PDF
Copyright Statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s13324-022-00646-0
Counterexample to the Laptev-Safronov Conjecture
(2022)
Journal Article
Eigenvalues of Magnetohydrodynamic Mean-Field Dynamo Models: Bounds and Reliable Computation
(2020)
Journal Article
Approximations of spectra of Schrödinger operators with complex potentials on ℝ^d
(2017)
Journal Article
Guaranteed resonance enclosures and exclosures for atoms and molecules
(2014)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search