Skip to main content

Research Repository

Advanced Search

Salt Marsh Response to Inlet Switch-Induced Increases in Tidal Inundation

Yellen, B; Woodruff, JD; Baranes, HE; Engelhart, SE; Geyer, R; Randall, N; Griswold, F

Salt Marsh Response to Inlet Switch-Induced Increases in Tidal Inundation Thumbnail


B Yellen

JD Woodruff

HE Baranes

R Geyer

N Randall

F Griswold


There is widespread concern that rapidly rising sea levels may drown salt marshes by exceeding the rate at which these important ecosystems can build elevation. A significant fraction of marshes reside within backbarrier estuaries, yet little attention has been paid to how changes in inlet geometry influences estuarine tides and marshes. In 1898, a coastal storm eroded a new inlet through the barrier beach that fronts the North-South Rivers Estuary in Massachusetts, USA. The new inlet shortened the North River by 5.6 km and lengthened the South River channel by the same amount. Modern measurements of tidal attenuation suggest that channel shortening abruptly increased mean high tide along the North River by at least 30 cm. Foraminifera communities within North River marsh sediments indicated an environmental change from infrequent to frequent inundation at the time of the 1898 switch in inlet location, which supports this hypothesis. Increased mineral sediment deposition after the inlet switch played a dominant role in allowing marshes along the North River channel to adjust to greater inundation. Following the inlet switch, sediment accreted in North River marshes at 2–5 times the rate of sea level rise (SLR). The North River channel widened by an average of 18% relative to pre-1898 conditions to accommodate the increased tidal prism. The role of mineral sediment accretion in making this marsh resilient to an abrupt increase in inundation depth highlights the importance of maintaining adequate sediment supplies in coastal regions as SLR accelerates.


Yellen, B., Woodruff, J., Baranes, H., Engelhart, S., Geyer, R., Randall, N., & Griswold, F. (2023). Salt Marsh Response to Inlet Switch-Induced Increases in Tidal Inundation. Journal of Geophysical Research: Earth Surface, 128(1),

Journal Article Type Article
Acceptance Date Dec 13, 2022
Online Publication Date Dec 22, 2022
Publication Date 2023-01
Deposit Date Dec 14, 2022
Publicly Available Date Jun 22, 2023
Journal Journal of geophysical research. Earth surface.
Print ISSN 2169-9011
Publisher American Geophysical Union
Peer Reviewed Peer Reviewed
Volume 128
Issue 1


You might also like

Downloadable Citations