B Yellen
Salt Marsh Response to Inlet Switch-Induced Increases in Tidal Inundation
Yellen, B; Woodruff, JD; Baranes, HE; Engelhart, SE; Geyer, R; Randall, N; Griswold, F
Authors
JD Woodruff
HE Baranes
Dr Simon Engelhart simon.e.engelhart@durham.ac.uk
Associate Professor
R Geyer
N Randall
F Griswold
Abstract
There is widespread concern that rapidly rising sea levels may drown salt marshes by exceeding the rate at which these important ecosystems can build elevation. A significant fraction of marshes reside within backbarrier estuaries, yet little attention has been paid to how changes in inlet geometry influences estuarine tides and marshes. In 1898, a coastal storm eroded a new inlet through the barrier beach that fronts the North-South Rivers Estuary in Massachusetts, USA. The new inlet shortened the North River by 5.6 km and lengthened the South River channel by the same amount. Modern measurements of tidal attenuation suggest that channel shortening abruptly increased mean high tide along the North River by at least 30 cm. Foraminifera communities within North River marsh sediments indicated an environmental change from infrequent to frequent inundation at the time of the 1898 switch in inlet location, which supports this hypothesis. Increased mineral sediment deposition after the inlet switch played a dominant role in allowing marshes along the North River channel to adjust to greater inundation. Following the inlet switch, sediment accreted in North River marshes at 2–5 times the rate of sea level rise (SLR). The North River channel widened by an average of 18% relative to pre-1898 conditions to accommodate the increased tidal prism. The role of mineral sediment accretion in making this marsh resilient to an abrupt increase in inundation depth highlights the importance of maintaining adequate sediment supplies in coastal regions as SLR accelerates.
Citation
Yellen, B., Woodruff, J., Baranes, H., Engelhart, S., Geyer, R., Randall, N., & Griswold, F. (2023). Salt Marsh Response to Inlet Switch-Induced Increases in Tidal Inundation. Journal of Geophysical Research: Earth Surface, 128(1), https://doi.org/10.1029/2022jf006815
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 13, 2022 |
Online Publication Date | Dec 22, 2022 |
Publication Date | 2023-01 |
Deposit Date | Dec 14, 2022 |
Publicly Available Date | Jun 22, 2023 |
Journal | Journal of geophysical research. Earth surface. |
Print ISSN | 2169-9011 |
Electronic ISSN | 2169-9011 |
Publisher | American Geophysical Union |
Peer Reviewed | Peer Reviewed |
Volume | 128 |
Issue | 1 |
DOI | https://doi.org/10.1029/2022jf006815 |
Public URL | https://durham-repository.worktribe.com/output/1186838 |
Files
Published Journal Article
(2.3 Mb)
PDF
You might also like
The importance of diatoms for understanding subduction zone earthquakes in Alaska
(2024)
Journal Article
Taraxerol abundance as a proxy for in situ Mangrove sediment
(2024)
Journal Article