Victor Forouhar Moreno victor.j.forouhar@durham.ac.uk
PGR Student Doctor of Philosophy
Victor Forouhar Moreno victor.j.forouhar@durham.ac.uk
PGR Student Doctor of Philosophy
Alejandro Benítez-Llambay
Professor Shaun Cole shaun.cole@durham.ac.uk
Director of the Institute for Computational Cosmology
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
We investigate the population of bright satellites (M∗≥105M⊙) of haloes of mass comparable to that of the Milky Way in cosmological simulations in which the dark matter (DM) is either cold, warm, or self-interacting (CDM, WDM, and SIDM, respectively). The nature of the DM gives rise to differences in the abundance and structural properties of field haloes. In WDM, the main feature is a reduction in the total number of galaxies that form, reflecting a suppression of low-mass DM haloes and lower galaxy formation efficiency compared to CDM. For SIDM, the changes are structural, restricted to the central regions of haloes and dependent on the assumed self-interaction cross-section. We also consider different baryonic subgrid physics models for galaxy formation, in which supernova gas blowouts can or cannot induce the formation of a core in dwarf galaxies. Overall, the inclusion of baryons lessen the differences in the halo properties in the different DM models compared to DM-only simulations. This affects the satellite properties at infall and therefore their subsequent tidal stripping and survival rates. None the less, we find slightly less concentrated satellite radial distributions as the SIDM cross-section increases. Unfortunately, we also find that the satellite populations in simulations with baryon-induced cores in CDM and WDM can mimic the results found in SIDM, making the satellite stellar mass and maximum circular velocity functions heavily degenerate on the assumed nature of the DM and the adopted subgrid modelling. These degeneracies preclude using the brightest satellites of the Milky Way to constrain the nature of DM.
Forouhar Moreno, V. J., Benítez-Llambay, A., Cole, S., & Frenk, C. (2022). Galactic satellite systems in CDM, WDM and SIDM. Monthly Notices of the Royal Astronomical Society, 517(4), 5627-5641. https://doi.org/10.1093/mnras/stac3062
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 20, 2022 |
Online Publication Date | Nov 10, 2022 |
Publication Date | 2022-12 |
Deposit Date | Jan 9, 2023 |
Publicly Available Date | Jan 9, 2023 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 517 |
Issue | 4 |
Pages | 5627-5641 |
DOI | https://doi.org/10.1093/mnras/stac3062 |
Public URL | https://durham-repository.worktribe.com/output/1183348 |
Published Journal Article
(2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
The FLAMINGO project: revisiting the S8 tension and the role of baryonic physics
(2023)
Journal Article
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search