G. Hattori
An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity
Hattori, G.; Trevelyan, J.; Gourgiotis, P.
Abstract
An isogeometric boundary element method (IGABEM) is developed for the analysis of two-dimensional linear and isotropic elastic bodies governed by the couple stress theory. This theory is the simplest generalised continuum theory that can eectively model size eects in solids. The couple stress fundamental solutions are explicitly derived and used to construct the boundary integral equations. A new boundary integral equation arises to obtain the moments and rotations introduced by the couple stress formulation. A new analytical solution is also derived in the present work for an elliptical opening in an innite sheet under uniaxial far-eld stress. Several stress concentration problems are examined to illustrate and validate the application of the IGABEM in couple stress elasticity. It is shown that the IGABEM scheme exhibits advantageous convergence properties in comparison with the conventional BEM for boundary value problems within the framework of couple stress elasticity.
Citation
Hattori, G., Trevelyan, J., & Gourgiotis, P. (2023). An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity. Computer Methods in Applied Mechanics and Engineering, 407, Article 115932. https://doi.org/10.1016/j.cma.2023.115932
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 30, 2023 |
Online Publication Date | Feb 11, 2023 |
Publication Date | Feb 11, 2023 |
Deposit Date | Jan 31, 2023 |
Publicly Available Date | Feb 24, 2023 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Print ISSN | 0045-7825 |
Electronic ISSN | 1879-2138 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 407 |
Article Number | 115932 |
DOI | https://doi.org/10.1016/j.cma.2023.115932 |
Public URL | https://durham-repository.worktribe.com/output/1180335 |
Files
Published Journal Article
(724 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
You might also like
eXtended Boundary Element Method (XBEM) for Fracture Mechanics and Wave Problems
(2023)
Book Chapter
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search