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Abstract

An isogeometric boundary element method (IGABEM) is developed for the analysis of two-dimensional linear and isotropic
lastic bodies governed by the couple stress theory. This theory is the simplest generalized continuum theory that can effectively
odel size effects in solids. The couple stress fundamental solutions are explicitly derived and used to construct the boundary

ntegral equations. A new boundary integral equation arises to obtain the moments and rotations introduced by the couple
tress formulation. A new analytical solution is also derived in the present work for an elliptical opening in an infinite sheet
nder uniaxial far-field stress. Several stress concentration problems are examined to illustrate and validate the application of
he IGABEM in couple stress elasticity. It is shown that the IGABEM scheme exhibits advantageous convergence properties
n comparison with the conventional BEM for boundary value problems within the framework of couple stress elasticity.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Couple stress; Boundary element method; Isogeometric

1. Introduction

In the present work, an isogeometric boundary element method (IGABEM) is developed for the first time for
lane-strain problems in the context of linear and isotropic couple stress elasticity. The couple stress theory of
lasticity, also known as Cosserat theory with constrained rotations, is the simplest gradient theory in which couple
tresses make their appearance. The theory was developed in rudimentary form by the Cosserat brothers [1] but
he subject reached maturity with the seminal works of Toupin [2] and Mindlin [3]. The couple stress theory
ssumes an augmented form of the Euler–Cauchy principle with a non-vanishing couple traction, and a strain–
nergy density that depends upon both the strain and the gradient of rotation. Such assumptions are appropriate
or materials with granular and layered structures, where the interaction between adjacent elements may introduce
nternal moments. It is noted that the couple stress theory is different from the micropolar (or Cosserat) theory that
akes material particles with six independent degrees of freedom (three displacement components and three rotation
omponents, the latter involving rotation of a micro-medium with respect to its surrounding medium). Due to the
resence of couple stresses, characteristic material lengths appear in the constitutive equations of the theory that
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can be related to the material microstructure. The presence of these characteristic lengths implies that the couple
stress theory encompasses the analytical possibility of size effects which are absent in the classical theory. Recent
studies provide an account of the determination of the characteristic lengths of couple stress theory and related
gradient theories via homogenization of heterogeneous materials (see e.g. [4–7]). The couple stress theory has been
successfully employed recently to model microstructured materials and pertinent size effects in various areas such
as fracture [8–11], contact [12–17], stress/strain localization [18–21], and wave propagation problems [22,23].

The Boundary Element Method (BEM) is a powerful and efficient method for solving many engineering
roblems, offering an efficient alternative to the FEM. In the last decades, the boundary element method has been
uccessfully employed for the solution of a multitude of boundary value problems in the frame of different general-
zed continuum theories. Most of the works are within the context of micropolar theory (see, for example, [24–28]),
ith a few works within strain-gradient elasticity [29–31]. However, to the authors’ best knowledge, no works exist
sing the boundary element method in the context of the standard couple stress theory. Mention here should be
ade to the works by Hadjesfandiari and Dargush [32], and Lei et al. [33,34] who treat plane strain problems using
boundary element approach within the frame of a variant model of the standard couple stress theory proposed

y Hadjesfandiari and Dargush [35]. In this model the couple stress tensor is considered to be skew-symmetric
upposedly eliminating the “inconsistency” of the couple stress theory regarding the indeterminacy of the isotropic
art of the couple stress tensor and accordingly the antisymmetric part of the stress tensor. However, as Neff
t al. [36] point out, the authors use an incomplete set of boundary conditions in their virtual work approach.
n particular, they assume that the normal component of the couple stress tensor mnn is zero on the boundary, a

claim which is not supported by any variational argument. This leads to different field equations and a different
set of boundary conditions than those rigorously derived by Toupin [2], Mindlin [3], and Koiter [37]. Note that as
Muki and Sternberg [38] showed (see Eqs. (2.13)-(2.15) in their paper), the couple stress tensor is unique, apart
from an arbitrary additive constant isotropic couple stress field, and hence the antisymmetric part of the stress
becomes fully determinate, showing therefore that no inconsistency occurs in the standard couple stress theory. The
latter conclusion is also reached by Neff et al. [36] (Section 8, in their work). Moreover, as Mindlin [39] points out
the standard couple stress theory can be formally derived from the Form III type of gradient elasticity by setting
to zero the supersymmetric part of the second gradient of the displacement ( ¯̄κ i jk = 0). Finally, we remark that in
the particular case of plane strain, where only the deviatoric part of the couple stress tensor enters the governing
equations, the model of Hadjesfandiari and Dargush [35] happens to yield the same field equations and boundary
conditions in terms of the displacements as in the standard couple stress theory. Nonetheless, in the case of antiplane
strain or in the general 3D case, the equations are different and the results obtained using the model presented in [35]
should be treated with caution.

As was shown by Simpson et al. [40], the advantages of isogeometric methods found in the FEM extend readily
to elastic analysis with the BEM. The resulting analysis method is called IGABEM (isogeometric analysis boundary
element method) where non-uniform rational B-splines (NURBS) are employed as shape functions for geometry
parameterization and approximation of the field variables. The IGABEM has great potential for the simulation of
elasticity problems because of its exact geometric representation and good approximation properties. Moreover, the
IGABEM is well suited for tackling problems within the framework of generalized continuum theories due to the
high-order continuity requirements of the field equations that occur in such theories. Indeed, as we shall see in
Section 2, the couple stress theory is governed by a fourth order differential operator as compared to the classical
Navier–Cauchy operator which is of the second order.

The paper is organized as follows. In Section 2 the governing equations of the standard couple stress elasticity
theory under plane strain conditions are presented. Then in Section 3, the fundamental plane strain solutions (Green’s
functions) for a concentrated force and a concentrated moment are derived in closed form using a Fourier transform
analysis (see also Appendix A). In Section 4, the two boundary integral equations for the displacement vector and the
rotation are obtained and closed form expressions are provided for the free terms (see also Appendix B). In Section 5,
an IGABEM discretization is developed for plane strain isotropic couple stress materials. In Section 6, an analytical
solution of the plane strain problem of an elliptical hole in an infinite couple stress material is derived using series
of Mathieu functions and the Schmidt orthogonalization process. Finally, in Section 7 various stress concentration
problems are examined involving couple stress materials with circular and elliptical holes. It is shown that the
IGABEM scheme exhibits advantageous convergence properties in comparison with the conventional polynomial
BEM formulation developed also in this study for comparison purposes. A comparison of the present results with
the classical elasticity solutions is also provided illustrating the well observed stiffening size-effects in problems

when the geometrical defects become comparable to the characteristic material length of the theory.
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2. Plane-strain couple stress elasticity

In this Section we recall briefly the main elements of the plane strain isotropic couple stress elasticity. More
etailed expositions of the theory can be found in the works of Toupin [2], Mindlin and Tiersten [3], and Koiter [37]
see also [10,22]).

For a body that occupies a closed domain Ω in the (x1, x2)-plane with a boundary Γ , and under conditions of
plane strain, the displacement field takes the general form

uq ≡ uq (x1, x2) ̸= 0, u3 ≡ 0. (1)

Note that henceforth all Latin indices span the range (1,2), subscripts preceded by a comma denote differentiation
with respect to pertinent Cartesian variable, and the summation convention is assumed throughout unless otherwise
noted. Accordingly, the governing kinematic relations in the framework of the geometrically linear theory become

εpq =
1
2

(uq,p + u p,q ), εp3 = 0, ε33 = 0 (2)

ω =
1
2

epquq,p, κq = ω,q (3)

here εpq are the components of the usual strain tensor, ω ≡ ω3 is the rotation, and κq ≡ κq3 are the non-
anishing components of the curvature tensor (i.e. the gradient of rotation). Also, epq is the 2D permutation tensor
e11 = e22 = 0, e12 = −e21 = 1).

Further, the stress equations of equilibrium reduce to

σpq,p + Xq = 0, epqσpq + m p,p + Y = 0, (4)

here σpq and m p ≡ m p3 are the components of the (asymmetric) stress and couple stress tensors, respectively, in
he case of plane strain. Moreover, Xq is the in-plane body force and Y ≡ Y3 is the out-of-plane component of the
ody couple.

For a homogeneous, centrosymmetric and isotropic linear couple stress material the constitutive equations furnish

σ(pq) =
2µν

1 − 2ν
δpqεkk + 2µεpq , σ33 = νσkk, (5)

and

mq = 4µℓ2κq , (6)

where δpq is the Kronecker delta, σ(pq) is the symmetric part of the stress tensor, µ is the shear modulus, ν is the
Poisson’s ratio, and ℓ is the characteristic material length of couple stress theory. The antisymmetric part σ[pq] of
the stress tensor can be readily found from Eq. (4)2 and is given, in conjunction with (3) as

σ[pq] = −
1
2

epqmk,k −
1
2

epqY = −2µℓ2epq∇
2ω −

1
2

epqY. (7)

The total stress is written as σpq = σ(pq) + σ[pq]. Regarding the traction boundary conditions at any point on
smooth boundary or section, the following two in-plane force-tractions tq and one out-of-plane couple-traction
≡ s3 should be specified

tq = σpqn p, s = mqnq , (8)

here nq are the components of the outward unit normal to the boundary.
Finally, combining Eqs (2)–(7), we derive the following system of coupled fourth order PDEs for the displacement

eld [41]

µ
(
∇

2uq + (1 − 2ν)−1u p,pq + ℓ2eqpemn∇
2un,pm

)
+ Xq +

1
2

eqpY,p = 0, (9)

here ∇
2 is the two-dimensional Laplace operator.
3
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3. Fundamental solutions

The field equations governing plane-strain deformations in the case of a couple stress material admit two infinite-
ody Green’s functions: one for an in-plane concentrated unit force (F) and one for an out-of-plane concentrated
nit couple (M). A closed form solution in both cases is obtained by employing the double exponential Fourier
ransform. The detailed derivation of the Green’s functions is given in Appendix A.

.1. Concentrated force

Consider now uq = U (F )
qk (x, ξ )ek the component of displacement in the qth direction at the point x caused by

a unit force (F) acting in the kth direction at point ξ . The displacement field in this case assumes the following
form

U (F )
qk =

1
8πµ(1 − ν)

[
r,qr,k − (3 − 4ν)δqk ln r

]
−

1
2πµ

[(
r,qr,k −

1
2
δqk

) (
2ℓ2

r2 − K2

[r
ℓ

])
+

1
2
δqk K0

[r
ℓ

]]
,

(10)

here r = x − ξ , with Cartesian components rq = xq − ξq and magnitude r = (rqrq )1/2, so that r,q = ∂r/∂xq =

qr−1, and Kn[·] is the modified second kind Bessel function of the nth-order.
Accordingly, the strain tensor and the rotation vector become

E (F )
pqk = −

1
8πµ(1 − ν)r

[
(1 − 2ν)(r,qδpk + r,pδqk) − r,kδpq + 2r,pr,qr,k

]
−

1
2πµr

(r,qδpk + r,pδqk + r,kδpq − 4r,pr,qr,k)
(

2ℓ2

r2 − K2

[r
ℓ

])
+

1
4πµℓ

[
r,qδpk + r,pδqk − 2r,pr,qr,k

]
K1

[r
ℓ

]
,

(11)

Ω (F )
k =

ekpr,p

4πµℓ

[
ℓ

r
− K1

[r
ℓ

]]
, (12)

here Ω (F )
k is the rotation (in the x3 direction) at point x due to a unit force acting in the kth direction.

Further, employing the constitutive and the balance equations, we derive the expressions for the stresses and the
ouple stresses as

Σ (F )
pqk = −

1
4π (1 − ν)r

[
(1 − 2ν)(r,qδpk + r,pδqk − r,kδpq ) + 2r,pr,qr,k

]
−

1
πr

(r,qδpk + r,pδqk + r,kδpq − 4r,pr,qr,k)
(

2ℓ2

r2 − K2

[r
ℓ

])
−

1
πℓ

[
r,pr,qr,k − r,qδpk

]
K1

[r
ℓ

]
,

(13)

nd

M (F )
qk =

emk

π
r,mr,q

(
2ℓ2

r2 − K2

[r
ℓ

])
−

eqk

π

ℓ

r

(
ℓ

r
− K1

[r
ℓ

])
. (14)

Based on the asymptotic properties of the modified Bessel functions, we can readily deduce that the displacement
(in the force direction) in couple stress elasticity retains the logarithmic singularity as r → 0, just as in the case
of classical elasticity. It is interesting to note, however, that for the special case of an incompressible material with
ν = 0.5, the displacement in couple stress elasticity becomes bounded since the logarithmic singularity is cancelled
out by the logarithmic singularity arising from the Bessel function K0 as r → 0. Similarly, the strain and stress
components remain singular and behave as O(r−1) for r → 0 in both theories, whereas the couple stresses exhibit a
logarithmic singularity. However, in marked contrast with the classical theory, the rotation in couple stress elasticity
is bounded at the point of application of the load. It is recalled that in the classical theory the rotation is singular,

−1
exhibiting an O(r ) variation as r → 0. The above observations are summarized in Table 1.

4
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Table 1
Asymptotic behaviour of the field quantities for the case of a concentrated force (F ).

Σ
(F )
pqk M (F )

qk E (F )
pqk Ω

(F )
k U (F )

qk

Couple stress elasticity O(r−1) O(ln r ) O(r−1) O(1) O(ln r )
Classical elasticity O(r−1) – O(r−1) O(r−1) O(ln r )

Table 2
Asymptotic behaviour of the field quantities for the case of a concentrated couple.

Σ
(M)
pq M (M)

q E (M)
pq Ω (M) U (M)

q

Couple stress elasticity O(ln r ) O(r−1) O(1) O(ln r ) O(1)

3.2. Concentrated couple

Consider now uq = U (M)
q (x, ξ ), the component of the displacement in the qth direction at the point x caused

by a unit couple (M) in the x3-direction at point ξ . The displacement field in this case assumes the following form

U (M)
q =

ekqr,k

4πµr

(
1 −

r
ℓ

K1

[r
ℓ

])
, (15)

nd accordingly the strain tensor and the rotation become

E (M)
pq =

1
8πµℓ2 (epkr,qr,k + eqkr,kr,p)

(
2ℓ2

r2 − K2

[r
ℓ

])
, (16)

Ω (M)
=

1
8πµℓ2 K0

[r
ℓ

]
. (17)

The stresses and couple stresses read respectively

Σ (M)
pq =

1
4πℓ2 (epkr,qr,k + eqkr,kr,p)

(
2ℓ2

r2 − K2

[r
ℓ

])
−

1
4πℓ2 epq K0

[r
ℓ

]
, (18)

M (M)
q = −

r,q

2πℓ
K1

[r
ℓ

]
. (19)

Based on the asymptotic properties of the modified Bessel functions, we derive the asymptotic behaviour of the
field quantities as r → 0 which is summarized in Table 2. Note that the fundamental solution for a concentrated
couple in the context of couple stress elasticity was given earlier by Weitsman [42] using a stress function approach.

It is worth noting that the same asymptotic behaviour for both fundamental solutions is also observed in
micropolar elasticity under plane strain conditions [43], however, the detailed structure of the field quantities is
different in the two theories. Also, we remark that the above fundamental solutions coincide with those obtained
in [33,44] using a different approach.

4. Boundary integral formulation

The point of departure is the reciprocal theorem within the framework of couple stress elasticity [45]. Let
(uq , ω, tq , s, Xq , Y ) and (u∗

q , ω
∗, t∗

q , s∗, X∗
q , Y ∗) be two equilibrium states of the same two dimensional elastic body,

then the reciprocal theorem states that∫
Γ

(t∗

q uq − tqu∗

q ) dΓ +

∫
Γ

(s∗ω − sω∗) dΓ +

∫
Ω

(X∗

quq − Xqu∗

q ) dΩ +

∫
Ω

(Y ∗ω − Yω∗) dΩ = 0. (20)

he Somigliana identities in couple stress theory can then be derived by using the reciprocal theorem (20) assuming
hat one of the equilibrium solutions coincides with the fundamental solution. Moreover, in what follows we also
ssume that the body forces and body couples vanish in the actual state, i.e. Xq = 0 and Y = 0, which is the case

or the boundary value problems considered in this study.

5
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For the case of the concentrated unit force (F) we have that: X∗
q = δqkδ(x − ξ )ek , Y ∗

= 0, and

u∗

q = U (F )
qk (x, ξ )ek, ω∗

= Ω (F )
k (x, ξ )ek, t∗

q = T (F )
qk (x, ξ )ek, s∗

= S(F )
k (x, ξ )ek, (21)

here δ(x) is the Dirac delta distribution, T (F )
qk = Σ (F )

pqk n p represents the force traction and S(F )
k = M (F )

pk n p represents
he couple traction due to the concentrated force. In this case it can be readily shown that the first Somigliana identity
or the displacements reads

uk(ξ ) =

∫
Γ

U (F )
qk tq dΓx −

∫
Γ

T (F )
qk uq dΓx +

∫
Γ

Ω (F )
k s dΓx −

∫
Γ

S(F )
k ω dΓx , (22)

ith ξ ∈ Ω\Γ , x ∈ Γ , and dΓx ≡ Γ (x).
For the case of the concentrated unit couple (M) we have that: X∗

q = 0, Y ∗
≡ Y ∗

3 = δ(x − ξ ), and

u∗

q = U (M)
q (x, ξ ), ω∗

= Ω (M)(x, ξ ), t∗

q = T (M)
q (x, ξ ), s∗

= S(M)(x, ξ ). (23)

here T (M)
q = Σ (M)

pq n p represents the force traction and S(M)
= M (M)

p n p represents the couple traction due to a
oncentrated couple. In this case it can be readily shown that the second Somigliana identity for the rotation reads

ω(ξ ) =

∫
Γ

U (M)
q tq dΓx −

∫
Γ

T (M)
q uq dΓx +

∫
Γ

Ω (M)s dΓx −

∫
Γ

S(M)ω dΓx (24)

ith ξ ∈ Ω\Γ and x ∈ Γ . It is worth noting that the second Somigliana identity (24) can be obtained directly from
he first one by applying the curl operator ((1/2)epq∂p) to Eq. (22). This is due to the fact that in couple stress
lasticity the rotation is constrained with the displacement through Eq. (3). On the contrary, in micropolar theory
oth integral equations are independent [25]. Finally, we note that the internal stresses and internal couple stresses
an be derived by combining the derivatives of (22) in conjunction with Eqs (2) and (3) to produce the strain and
urvature components and then using the constitutive Eqs. (5)–(6) together with Eq. (7). Expressions for the internal
tress and couple stresses can be found in [34].

Following the limiting process proposed by Liang and Huang [25] in micropolar elasticity, we let ξ → Γ in Eqs
22) and (24). Two boundary integral equations are then derived, a vector equation for the displacements (DBIE)
nd a scalar equation for the out-of-plane rotation, which we call a rotation boundary integral equation (RBIE). The
oundary integral equations assume the following form (with the dependence of the Green’s functions and field
uantities on the field and source points omitted for brevity):

cqk uq + −

∫
Γ

T (F )
qk uq dΓx +

∫
Γ

S(F )
k ω dΓx =

∫
Γ

U (F )
qk tq dΓx +

∫
Γ

Ω (F )
k s dΓx , (25)

co ω +

∫
Γ

T (M)
q uq dΓx + −

∫
Γ

S(M)ω dΓx =

∫
Γ

U (M)
q tq dΓx +

∫
Γ

Ω (M)s dΓx . (26)

here −

∫
denotes that the integral is interpreted in the Cauchy principal value (CPV) sense. The free terms cqk(ξ )

nd co(ξ ) can be obtained by using the concept of a rigid body motion. Analytical expressions of the free terms in
ouple stress elasticity for the general case of a non-smooth boundary are presented in Appendix B. For the case
f a smooth boundary it is shown that cpq = (1/2)δpq as in the classical theory, and co = 1/2.

. Isogeometric formulation

The traditional development of the Boundary Element Method involves the discretization of a Boundary Integral
quation, so that boundary Γ is subdivided into non-overlapping elements, i.e. Γ = ∪

ne
i=1Γi , over each of which

he solution variables are assumed to vary in a prescribed way. The classical development is to write, for example,
he displacement in the qth direction in a piecewise polynomial expansion,

uq (η) =

J∑
α=1

Nα(η)uα
q , (27)

here uα
q is the displacement in the qth direction at node α of J on an element, Nα is the polynomial shape

unction for the node α, and η ∈ (−1, 1) is the parametric coordinate defining the element. The main idea behind

sogeometric formulations is, for the descriptions of both the geometry and the solution variables, to replace the use

6
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of polynomial shape functions with basis functions underlying Non-Uniform Rational B-Splines (NURBS). Thus,
the displacement expansion becomes

uq (φ) =

nc−1∑
α=0

Rα,p(φ)Aα
q , (28)

here Rα,p(φ) is the NURBS basis function for control point α, nc is the number of control points, p is the degree
f the NURBS spline and φ is the parametric coordinate used in the spline definition. We denote using Aα

q a set of
oefficients that, once they become known through the IGABEM solution, will allow the displacement to be fully
ecovered by application of (28). While it plays a role similar to the nodal displacement uα

q in (27), Aα
q should not be

hought of as a nodal displacement because (i) the concept of nodes is lost in moving to isogeometric formulations,
nd (ii) the basis functions Rα,p(φ) are non-interpolatory. It should also be noted that the notation for NURBS basis
unctions, Rα,p, is standard and the comma should not be interpreted as indicating differentiation.

Similarly to (28), one can write the traction components tq , rotation ω and couple-traction, s, in expansions of
he NURBS basis functions,

tq (φ) =

nc−1∑
α=0

Rα,p(φ)Bα
q , (29)

ω(φ) =

nc−1∑
α=0

Rα,p(φ)Dα, (30)

s(φ) =

nc−1∑
α=0

Rα,p(φ)Eα, (31)

with Bα
q , Dα and Eα becoming unknown coefficients alongside Aα

q . The construction of NURBS basis functions
and splines is standard and will be presented here only briefly; the interested reader is directed to Piegl & Tiller’s
classic text [46]. The starting point is the knot vector Φ, containing a non-decreasing set of nk numbers (the knots)
n the parametric variable φ, i.e.

Φ = {φ0, φ1, . . . , φnk−1}. (32)

he B-spline basis functions are then constructed using the Cox–de Boor recursive relations, starting with degree
p = 0:

Nα,0(φ) =

{
1if φα ≤ φ ≤ φα+1
0 otherwise , (33)

nd then, recursively, for higher degree

Nα,p(φ) =
φ − φα

φα+p − φα

Nα,p−1(φ) +
φα+p+1 − φ

φα+p+1 − φα+1
Nα+1,p−1(φ). (34)

he number of control points, nc, and the number of knots, nk , are linked by the relation nc = nk − p − 1. Finally,
he NURBS basis functions may be found by applying a set of weights wα to the B-spline basis functions,

Rα,p(φ) =
Nα,p(φ)wα∑nc−1

β=0 Nβ,p(φ)wβ

, (α not summed). (35)

A NURBS curve C(φ) may now be formed from the above basis functions and a set of control points Pα ∈ R2,
using

C(φ) =

nc−1∑
α=0

Rα,p(φ)Pα. (36)

In a wide body of literature on isogeometric methods, the set of NURBS basis functions has been consistently
shown to offer some key benefits: (i) the NURBS spline (36) can exactly reproduce conic sections, (ii) the NURBS
definition facilitates a direct linkage between CAD and analysis, and (iii) the smoothness and non-negativity of
7
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a

the basis offer improved convergence properties in finite element and boundary element approximations (see, for
example in an IGABEM context, [47]).

Substitution of the NURBS expansions for the solution variables, (28) to (31), into the boundary integral Eqs. (25)
nd (26), yields a discretized form

cqk(ξ )uq (ξ ) +

nc−1∑
α=0

[
R(F )

αqk Aα
q + L(F )

αk Dα
]

=

nc−1∑
α=0

[
D(F )

αqk Bα
q + M(F )

αk Eα
]

(37)

co(ξ )ω(ξ ) +

nc−1∑
α=0

[
R(M)

αq Aα
q + L(M)

α Dα
]

=

nc−1∑
α=0

[
D(M)

αq Bα
q + M(M)

α Eα
]

(38)

where

R(F )
αqk =

∫
Γ

Rα,p(φ(x))T (F )
qk (x, ξ )dΓx , (39)

L(F )
αk =

∫
Γ

Rα,p(φ(x))S(F )
k (x, ξ )dΓx , (40)

D(F )
αqk =

∫
Γ

Rα,p(φ(x))U (F )
qk (x, ξ )dΓx , (41)

M(F )
αk =

∫
Γ

Rα,p(φ(x))Ω (F )
k (x, ξ )dΓx , (42)

R(M)
αq =

∫
Γ

Rα,p(φ(x))T (M)
q (x, ξ )dΓx , (43)

L(M)
α =

∫
Γ

Rα,p(φ(x))S(M)(x, ξ )dΓx , (44)

D(M)
αq =

∫
Γ

Rα,p(φ(x))U (M)
q (x, ξ )dΓx , (45)

M(M)
α =

∫
Γ

Rα,p(φ(x))Ω (M)(x, ξ )dΓx . (46)

The above boundary integrals may be evaluated element-by-element, noting that in IGABEM the concept of an
‘element’ can usefully be interpreted as a knot-span, i.e. the interval between unique knots in the knot vector Φ.
We collocate Eqs. (37) and (38) at a number of collocation points that equals the number of control points. Here,
again, the IGABEM implementation necessarily differs from conventional BEM, in that the control points cannot
themselves be used as collocation points because they do not in general lie on the boundary Γ . It is common in
IGABEM to collocate at the so-called Greville abscissae [48], and we adopt this approach in the current work.

Application of boundary conditions in the conventional BEM fashion yields a square linear system of equations
in unknowns {(Aα

q , Bα
q , Dα, Eα), α = 0, . . . , nc −1, q = (1, 2)} that can readily be solved. Boundary displacements,

tractions, rotations and couple-tractions can then be recovered by application of Eqs. (28) to (31).

6. An analytical couple stress solution for the elliptical hole problem

An analytical solution is derived here for the plane strain problem of an elliptical hole in an infinite plate under
uniform tension in couple stress elasticity. Previous works dealing with the elliptical openings in couple stress
theory include the work by Hsu et al. [49] where an approach based on Mathieu functions was employed and a
set of approximate boundary conditions was used satisfying the traction free conditions on the hole only in an
average sense. No results were presented in this work. Itou [50] employed the Schimdt method in conjunction
with a polar coordinates formulation showing some results for the stress concentration factor (SCF) in the form of
graphs. However, the method employed there works well only for ratios of the major to minor axis of the ellipse that
are close to unity. Recently, Haftbaradaran and Shodja [51] have examined elliptic inhomogeneities and inclusion
problems in antiplane couple stress elasticity. Our approach is based on Mathieu functions and a modified version

of the Schmidt method [50,52,53]. Note that summation convention is not employed in this Section.

8
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Fig. 1. (a) Elliptic coordinates system (b) Positive components of stress and couple stress components in elliptic coordinates.

We work with elliptic coordinates (ξ, η) which are related with (x1, x2) through the expressions

x1 = c cosh ξ cos η and x2 = c sinh ξ sin η, (47)

here 0 ≤ ξ ≤ ∞ and 0 ≤ η ≤ 2π . The curves ξ = const. and η = const. constitute an orthogonal curvilinear
ystem of hyperbolas and confocal ellipses, respectively, with common foci the points at (±c, 0), as shown in
ig. 1(a). Also, in Fig. 1(b) the positive components of the in-plane stress and couple stresses are shown in the
lliptic coordinate system.

Mindlin [54] showed that the stresses and couple stresses can be expressed in terms of two stress functions that
atisfy the equilibrium Eqs. (4) (with zero body force and body couple) automatically. In elliptic coordinates, the
elations between the Mindlin’s stress functions Φ(ξ, η) and Ψ (ξ, η) and the stress and couple stress components
ssume the following form [49]

σξξ =
2

c2A
∂2Φ

∂η2 +
2

c2A2 sinh 2ξ
∂Φ

∂ξ
−

2
c2A2 sin 2η

∂Φ

∂η
−

2
c2A

∂2Ψ

∂ξ∂η

+
2

c2A2 sin 2η
∂Ψ

∂ξ
+

2
c2A2 sinh 2ξ

∂Ψ

∂η
,

(48)

σηη =
2

c2A
∂2Φ

∂ξ 2 −
2

c2A2 sinh 2ξ
∂Φ

∂ξ
+

2
c2A2 sin 2η

∂Φ

∂η
+

2
c2A

∂2Ψ

∂ξ∂η

−
2

c2A2 sin 2η
∂Ψ

∂ξ
−

2
c2A2 sinh 2ξ

∂Ψ

∂η
,

(49)

σξη = −
2

c2A
∂2Φ

∂ξ∂η
+

2
c2A2 sin 2η

∂Φ

∂ξ
+

2
c2A2 sinh 2ξ

∂Φ

∂η
−

2
c2A

∂2Ψ

∂η2

−
2

c2A2 sinh 2ξ
∂Ψ

∂ξ
+

2
c2A2 sin 2η

∂Ψ

∂η
,

(50)

σηξ = σξη + ∇
2Ψ , (51)

mξ =

√
2

c
√
A

∂Ψ

∂ξ
, mη =

√
2

c
√
A

∂Ψ

∂η
, (52)

here

A = cosh 2ξ − cos 2η and ∇
2

=
2
2

[
∂2

2 +
∂2

2

]
. (53)
c A ∂ξ ∂η

9
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Fig. 2. Elliptic hole in an infinite planar domain under uniform tension perpendicular to the major axis of the ellipse.

Compatibility requires that the stress functions in couple stress elasticity satisfy a coupled system of differential
quations [54] which in elliptic coordinates assumes the following form

∂ξ (Ψ − ℓ2
∇

2Ψ ) = −2(1 − ν)ℓ2∂η(∇2Φ) and ∂η(Ψ − ℓ2
∇

2Ψ ) = 2(1 − ν)ℓ2∂ξ (∇2Φ), (54)

hich in turn implies that

∇
4Φ = 0 and ∇

2Ψ − ℓ2
∇

4Ψ = 0. (55)

he solution of (55)1, taking into account also the symmetries for the stresses in our boundary value problem (see
ig. 2), is expressed as [55]

Φ =w1ξ +

∞∑
m=1

wm+1e−2 mξ cos 2mη +

∞∑
m=1

pme2 mξ cos 2mη

+

∞∑
m=1

fm

(
e−(2m−2)ξ cos 2 mη + e−2mξ cos (2m − 2)η

)
+

∞∑
m=1

dm

(
e(2m−2)ξ cos 2 mη + e2mξ cos (2m − 2)η

)
(56)

here we note that first three terms on the RHS of (56) are harmonic while the rest of them are biharmonic. The
eneral solution of (55)2 can be expressed as Ψ = Ψ0 + Ψ1 where the functions Ψ0(ξ, η) and Ψ1(ξ, η) are the
olutions of the partial differential equations

∇
2Ψ0 = 0 and Ψ1 − ℓ2

∇
2Ψ1 = 0. (57)

ote that the compatibility Eqs. (54) in conjunction with (57) imply that the functions Ψ0 and −2(1 − ν)ℓ2
∇

2Φ
ust be harmonic conjugates. This leads to the following form for Ψ0

Ψ0 =

∞∑
m=1

hm

A

(
e−(2m−2)ξ sin 2 mη − e−2mξ sin (2m − 2)η

)
. (58)

inally, for the solution of (57)2 we take (see McLachlan [56], p.311, and [57])

Ψ1 =

∞∑
gm

Gek2m[ξ, −q]
Gek [ξ , −q]

se2m[η, −q] (59)

m=1 2m 0

10
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where q = c2/(4ℓ2), Gek2m is the modified Mathieu function of the second kind of the 2m order, and se2m is the
first kind angular Mathieu function with odd parity1. The Mathieu functions are defined as [56]

se2m[η, −q] = (−1)m−1
N∑

j=0

(−1) j B(2 m)
2 j+2 sin(2 j + 2)η, (60)

Gek2m[ξ, −q] = (−1)m ŝ2m

π B(2 m)
2

N∑
j=0

B(2 m)
2 j+2

(
I j [χ1]K j+2[χ2] − I j+2[χ1]K j [χ2]

)
, (61)

ith χ1 =
√

qe−ξ , χ2 =
√

qeξ , and ŝ2m =
{
se′

2m(0, q) · se′

2m(π/2, q)
}
/
{

q B(2 m)
2

}
. The prime denotes

ifferentiation with respect to the variable η, and I j [·] is the modified Bessel function of the first kind. The
oefficients B j in the above relations are functions of q and the characteristic number and they are evaluated by
mploying the pertinent recurrence relations for se2m (see Chapter 3 in [56]). It is worth noting that the above
roduct series representation of Gek2m converges absolutely and uniformly for all values ξ , and rapid convergence
s observed for small and moderate values of q and m [56]. In the limiting case where the ellipse tends to a circle,
he eccentricity goes to zero and thus c → 0 and accordingly q → 0. The Mathieu functions can be then represented
y their simpler forms ([56], pp. 367–369)

se2m[η, −q] → sin 2mη, and Gek2m[ξ, −q] → (−1)mπ−1ŝ2m K2m[
√

qeξ ], (62)

hich become useful in the numerical computations when the elliptical boundary of the hole tends to a circle.
Fig. 2 depicts an elliptical hole in an infinite domain under plane strain conditions where the far field loading S

is normal to the major semi-axis a of the ellipse. The boundary of the elliptical hole is defined by ξ = ξ0 and its
oci at (±c, 0) with c = (a2

− b2)1/2 and b being the minor semi-axis of the ellipse (b ≤ a).
The boundary conditions at the elliptical hole are

σξξ (ξ0, η) = 0, σξη(ξ0, η) = 0, mξ (ξ0, η) = 0, (63)

hereas the regularity conditions at infinity are

σ∞

22 = S, σ∞

11 = σ∞

12 = σ∞

21 = m∞

1 = m∞

2 = 0, (64)

s x2
1 + x2

2 → ∞. Employing the regularity conditions and using the compatibility Eqs. (54), we readily derive that

pm =

{
Sc2

16 , m = 1,

0, m > 1,
dm =

{
Sc2

16 , m = 1,

0, m > 1,
fm =

{
Sc2

16 +
q h1

4(1−ν) , m = 1,
q hm

4(1−ν)(2m−1) , m > 1,
(65)

he stress functions for the elliptical hole problem become finally

Φ =
Sc2

16

(
2 cos 2η + e2ξ

+ e−2ξ
+ e2ξ cos 2η

)
+ w1ξ +

∞∑
m=1

wm+1e−2 mξ cos 2mη

+
q

4(1 − ν)

∞∑
m=1

hm

2m − 1

(
e−(2m−2)ξ cos 2 mη + e−2mξ cos (2m − 2)η

)
,

(66)

Ψ =

∞∑
m=1

hm

A

(
e−(2m−2)ξ sin 2 mη − e−2mξ sin (2m − 2)η

)
+

∞∑
m=1

gm
Gek2m[ξ, −q]
Gek2m[ξ0, −q]

se2m[η, −q]. (67)

The stresses and couple stresses can then be derived using Eqs (48)–(53). Truncating the series solution, the
oundary conditions (63) can now be written in the following form [50]

M∑
m=1

[
wm W (σ )

m (η) + hm H(σ )
m (η) + gm G(σ )

m (η)
]

= −s(η), (68)

M∑
m=1

[
wm W (τ )

m (η) + hm H(τ )
m (η) + gm G(τ )

m (η)
]

= −τ (η), (69)

1 Note that in Hsu et al. [49] in the solution for Ψ , the modified Mathieu function Fek was erroneously used instead of Gek .
1 2m 2m
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Table 3
Convergence of SCF for the analytical series solution.
The Poisson’s ratio is ν = 0.25 and a/ℓ = 10.

SCF

M b/a = 1 b/a = 0.5 b/a = 0.25 b/a = 0.15
10 4.32791 4.32791 6.51968 9.00925
12 · 4.32766 6.53859 9.10058
14 · 4.32763 6.54244 9.14402
16 · · 6.54339 9.20276
18 · · 6.54365 9.23133
20 · · 6.54372 9.23950
22 · · 6.54374 9.24156
24 · · 6.54376 9.24203
26 · · · 9.24211
28 · · · 9.24209

M∑
m=1

[
hmH(µ)

m (η) + gm G(µ)
m (η)

]
= 0, (70)

ith ⎧⎨⎩s(η) =
S

8A2
0

(
A0

(
1 − e4ξ0 + 2A0(2 + e2ξ0 )

)
+ 2 sinh 2ξ0

)
τ (η) =

S
4

sin 2η

A2
0

(
1 + A0e2ξ0

)
,

A0 = cosh 2ξ0 − cos 2η (71)

nd
W (σ )

m (η) = ∂wm σξξ (ξ0, η), H(σ )
m (η) = ∂hm σξξ (ξ0, η), G(σ )

m (η) = ∂gm σξξ (ξ0, η),

W (τ )
m (η) = ∂wm σξη(ξ0, η), H(τ )

m (η) = ∂hm σξη(ξ0, η), G(τ )
m (η) = ∂gm σξη(ξ0, η),

H(µ)
m (η) = ∂hm mξ (ξ0, η), G(µ)

m (η) = ∂gm mξ (ξ0, η), m ≥ 1.

(72)

he explicit expressions of the above functions are lengthy and are not shown here. The solution of the system of
qs. (68)–(70) is achieved by using the modified Schmidt orthogonalization process as described in [50,52]. The
rocedure is detailed in Appendix C. Once the coefficients wm , hm and gm are known, the stress functions can be
valuated from (66) and (67) and accordingly the stresses and couple stresses from (48)–(53).

The accuracy of the solution depends on M : the number of terms in the series solution, and N : the number of
erms to compute the Mathieu functions in (60) and (61). It is found that N = M + 5 works well for the evaluation
f the Mathieu functions of order 2M and for small and moderate values of q. Note that as the ratios b/a and ℓ/a
ecrease, a larger M is required for a converged solution. Table 3 shows the convergence of the series solution for
he stress concentration factor (SCF) Kt as computed from (75) for a couple stress material with Poisson’s ratio
= 0.25 and a/ℓ = 10.

. Application examples

In this section, we consider a number of examples which illustrate various features of the numerical behaviour of
he solutions. In all examples, a consistent set of units is used with null couple stress boundary conditions applied
t all boundaries.

.1. Circular hole in infinite plate

We study a plane strain problem of a circular hole of radius a in a large domain under an applied far-field biaxial
ensile stress of σ̄1 and σ̄2 (σ̄1 > σ̄2) in the x1 and x2 directions, respectively. Mindlin [54] provides the analytical
olution for the maximum circumferential stress on the rim of the circular opening as

σmax =
3σ̄1 − σ̄2 + (σ̄1 + σ̄2)F

(73)

1 + F
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Fig. 3. Maximum stress at rim of the circular hole under biaxial loading as a function of a/ℓ.

where

F =
8(1 − ν)

4 +
a2

ℓ2 +
2a
ℓ

K0[a/ℓ]
K1[a/ℓ]

, (74)

e consider a material having Poisson’s ratio ν = 0.33, with the plate subjected to far field stresses σ̄1 = 2σ̄2. For
he purposes of analysis the infinite domain is truncated by a large square box. Since the meshing is confined to the
oundary, we can use an arbitrarily large square without incurring the cost of more elements, and in our analyses
e define a square of side 106a.
Fig. 3 shows the variation of maximum stress with a/ℓ. For these results we use 64 elements to discretize

he circular hole. The IGABEM solution is derived from a model containing 64 elements (i.e. knot spans) on the
ircular hole, with NURBS basis functions of degree p = 2. The results are compared against a conventional BEM
cheme using 64 piecewise-quadratic elements to model the circular hole. It is evident that both polynomial BEM
nd IGABEM formulations produce results that correlate well against the analytical solution.

.1.1. Convergence
Fig. 4 displays the convergence of the two formulations for ratios a/ℓ = {1.5, 15, 50}, respectively. The plots

show that the IGABEM outperforms polynomial BEM offering up to one order of magnitude reduction in error. As
in most isogeometric implementations, the improved accuracy can be attributed to a combination of two factors:
the smoother, non-negative basis functions and the higher fidelity representation of the geometry. Recalling that
conic sections may be represented exactly using NURBS, it follows that for this example of a circular hole the
geometry of the circle is represented exactly in the IGABEM scheme, while some geometric errors are made using
the quadratic element. This effect will be most evident in the coarser meshes and it can consequently be seen that
for some a/ℓ (e.g. the case a/ℓ = 50 in Fig. 4c) the benefit of IGABEM becomes less pronounced for the finer
discretizations.

In Fig. 4 the lines showing the convergence rate for IGABEM have been calculated by neglecting the point
relating to the coarsest mesh (ndof = 72, displayed on the left edge of the plot). It is interesting to see the surprisingly
good performance of the coarsest IGABEM model consistently providing results of better accuracy than the next
refinement level (ndof = 108). The reason for this curiously beneficial preasymptotic behaviour is unclear. The
convergence rates of the polynomial and IGABEM formulations are similar, with IGABEM generally exhibiting a
slightly higher convergence rate for moderate a/ℓ, but with the polynomial basis converging more rapidly for large

/ℓ as the solution approaches that for classical elasticity.

13
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c

a

Fig. 4. Convergence for circular opening, (a) a/ℓ = 1.5, (b) a/ℓ = 15, (c) a/ℓ = 50.

7.2. Elliptical openings

The next case is that of an elliptical hole in an infinite domain under the action of a uniaxial far-field stress
S normal to the major axis of the ellipse as shown in Fig. 2. The analytical plane strain solution was derived in
Section 6. The problem was examined using the standard BEM in the recent work of Lei et al. [33]. In Fig. 5
we present the variation of the stress concentration factor, Kt , with the ratio a/ℓ for a material with Poisson’s
ratio ν = 0.25. Here we use a conventional definition of the stress concentration factor, in terms of the maximum
ircumferential stress σmax , as

Kt =
σmax

S
(75)

In the figure, the results of a refined IGABEM scheme with 1620 degrees of freedom are presented for ellipse
aspect ratios b/a = {1, 0.5, 0.25}, with the first of these representing a circular hole. The IGABEM results compare
very well with the analytical solution and are seen to converge towards the famous classical solution due to
Inglis [58] i.e. Kt = {3, 5, 9} (respectively), for large a/ℓ as we move towards classical elasticity. We note that
the convergence to the classical solution is slower for ellipses with more extreme aspect ratio, so that even for
/ℓ = 100, the stress concentration factor for the case b/a = 0.25 is Kt = 8.59, i.e. 4.6% lower than the asymptotic

value of K = 9 for this aspect ratio.
t
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Fig. 5. Variation of stress concentration factor with a/ℓ for the elliptical opening.

Fig. 6. Convergence for elliptical opening: (a) a/ℓ = 2 and (b) a/ℓ = 5.

We plot convergence for the cases a/ℓ = {2, 5} in Fig. 6. Once again, it is evident that the NURBS basis
affords the IGABEM scheme advantageous convergence properties in comparison with the conventional piecewise
polynomial basis.

In Table 4, we compare the ellipse stress concentration factors as produced by different BEM schemes. We
list also our analytical solution, and reproduce the results of Lei et al. [33], who used a quarter-symmetric model
comprising 68 elements. It is difficult to draw a reliable comparison with [33] because, although the number of
elements is given, it is not clear how those authors performed numerical integration, nor how they implemented the
symmetry. However, 68 continuous, quadratic elements would correspond to 408 degrees of freedom to model the
quarter plate, and in the table we compare those results against the use of 480 (polynomial) and 468 (IGABEM)
degrees of freedom to model the complete plate. The IGABEM results are in a very good agreement with the

analytical solution illustrating that the IGABEM formulation is capable of delivering highly accurate solutions.
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Table 4
Comparison of Kt results for elliptical opening from different schemes.

a/ℓ b/a Analytical solution Lei et al. [33] Polynomial 480 dof IGABEM 468 dof

1 0.5 2.8630 2.8203 2.8627 2.8630

0.25 4.5495 4.4093 4.5487 4.5494

2 0.5 3.1920 3.1660 3.1909 3.1918

0.25 4.9683 4.8225 4.9652 4.9676

20 0.5 4.6725 4.7019 4.6691 4.6718

0.25 7.2719 6.6824 7.2453 7.2660

Fig. 7. Strip containing a hole near a shoulder fillet.

Fig. 8. Geometric detail and parametric definitions.

7.3. Hole near shoulder fillet

We close by considering an example demonstrating the flexibility of the numerical method presented in this
article, a flexibility inherited from its basis in the boundary element method. No reference solutions are available,
but we present the results in the spirit of Peterson [59] and later Pilkey [60], which are popular sources for design
engineers requiring stress concentration factors for a wide variety of situations. We present results for a plane strain
strip containing a hole near a shoulder fillet.

The geometry is presented in Fig. 7, and consists of a strip of length W and height H , acted on by a horizontal
stress S on its right hand edge. Roller boundary conditions are applied to the left and bottom edges with null

couple stresses at all boundaries. Fig. 8 presents a detailed view of the geometry of the shoulder fillet, of radius a,
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Fig. 9. Deformed shape of the hole, with different characteristic lengths.

Fig. 10. Stress concentration factors for hole near shoulder fillet.

and circular hole of radius r . The centre of the hole is located in the polar coordinate system (R, θ) as shown in
the Figure.

For our study we consider the geometry given by R/a = 2, r/a = 0.5 and Poisson’s ratio ν = 0.3. The outer
boundary is meshed using 116 elements of approximately uniform size, with a further 32 elements used to model
the circular hole. No convergence study is performed but the mesh density is informed by the convergence studies
contained in the preceding sections. The IGABEM formulation is used with a NURBS basis of degree p = 2, so
that the model consists of a total of 474 degrees of freedom.

Fig. 9 shows the deformed shape of the hole, for the case θ = 45◦, when analysed using different characteristic
lengths expressed nondimensionally as r/ℓ = {2, 3, 5, 10, 100}. This shows the shape of the deformed hole to
become more elongated for small characteristic lengths, i.e. as we approach the classical elasticity solution. Finally,
Fig. 10 shows the variation of the stress concentration factor, defined as in (75), with angle θ and the dimensionless
ratio r/ℓ. It is shown the variation of ℓ has a marked effect on the stress concentration factor, with the introduction
of couple stresses having a beneficial effect in reducing the peak stress experienced as ℓ increases. Such a behaviour
confirms the well documented stiffening size effects that are observed in cases where the material microstructure

becomes comparable to the geometrical characteristics of the body. Generally Kt is seen also to reduce as θ
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r

increases, owing to the increased shadowing of the hole by the shoulder fillet, though a peak at θ ≈ 30◦ for
/ℓ > 5 shows that the interaction between the stress concentrations at the hole and fillet becomes complicated.

The curves for all characteristic lengths exhibit a ‘knee’ somewhere in the range 30 < θ < 50◦. This is the
result of the location of the maximum stress changing with different locations of the hole as measured by angle θ .
For the portions of the curves to the left of the knee, i.e. for small θ , the peak stress lies close to the top of the
hole between 12 o’clock and 1 o’clock on the clock face. Conversely, for larger θ the peak stress lies close to the
bottom of the hole, between 6 o’clock and 7 o’clock. A dashed line is included on the graph to demarcate these
two regions, and it is interesting to note that the position (in θ ) of the knee is a function of characteristic length.

This final study shows that engineers working with foams, and other cellular materials that exhibit a characteristic
length that cannot be considered small in comparison with feature sizes, would benefit from extensions to [59,60]
for use with these classes of material.

8. Conclusions

In the present work, we have developed an isogeometric boundary element method (IGABEM) for plane strain
problems in couple stress elasticity. The IGABEM is very well suited for boundary value problems treated in the
frame of generalized continuum theories due to the higher order continuity requirements imposed on the field
quantities. Using a Fourier transform analysis, the fundamental solutions of the theory are obtained in closed form.
Accordingly, employing the reciprocal theorem, two boundary integral equations are derived for the displacement
and the rotation. An analytical solution is also derived for the elliptical hole plane strain problem in couple stress
elasticity. The IGABEM formulation is validated against the derived analytical solutions but also with the results
obtained by a conventional polynomial BEM also developed in the present study. It is shown that the IGABEM
scheme exhibits superior convergence properties in comparison with standard BEM formulations. The results for the
stress concentration problems examined in the present work exhibit considerable deviations from the predictions
of classical elasticity. These deviations are more pronounced when the size of the geometrical defects becomes
comparable to the characteristic material length of the couple stress theory. In such cases, stiffening size effects are
observed which are in accordance with experimental observations in microstructured materials.

Finally, we note that the present formulation allows for the analysis of problems with more complex geometries
and can be readily extended to deal with boundary value problems that exhibit strong discontinuities such as cracks
and contact problems in Cosserat materials.
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Appendix A. Derivation of fundamental solutions

The static 2D Green’s functions for an isotropic couple stress medium under plane strain conditions are derived
in this Appendix. The analysis is based on the double Fourier transform. The direct (FT) and inverse (FT−1) double
Fourier transforms are defined, respectively, as

f̂ (k) = FT{ f (r)} =

∫
R2

f (x)ei r·k dx, (A.1)

f (x) = FT−1
{ f̂ (k)} =

1
(2π )2

∫
R2

f̂ (k)e−i r·k dk. (A.2)
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where rq = xq − ξq with r = (rqrq )1/2, kq is the Fourier vector with k = (kqkq )1/2, and i is the imaginary unit.
Applying the Fourier transform to the equilibrium Eq. (9) and using its well-known properties we obtain

µ

[
eqpemnℓ

2k2kpkm ûn − k2ûq −
1

1 − 2ν
kqkpû p

]
+ X̂q −

i
2

eqpkpŶ3 = 0. (A.3)

o compute the transformed displacement ûk , we exploit the antisymmetric properties of the permutation tensor eqp

nd multiply (A.3) by kq , which leads to

kq ûq =
(1 − 2ν)X̂qkq

2µ(1 − ν)k2 . (A.4)

Next, the two dimensional e − δ identity: eqpemn = δqmδpn − δqnδpm is used in (A.3) in conjunction with (A.4),
which after some lengthy manipulations yields the following solution for the transformed displacement field

µûq =
1

k2(1 + ℓ2k2)

[
(1 − 2ν)kqkp

2(1 − ν)k2 (ℓ2k2
−

1
1 − 2ν

) + δqp

]
X̂ p −

i eqpkp

2k2(1 + ℓ2k2)
Ŷ3. (A.5)

.1. Concentrated force

The 2D infinite body Green’s function will be now obtained for a concentrated unit force (F): Xq = δqkδ(r)ek ,
pplied at point ξ in the kth-direction, where δ(r) = δ(r1)δ(r2) is the Dirac delta distribution. The displacement
s then defined as uq = U (F )

qk ek denoting the displacement at point x in the qth-direction due to a unit force at
oint ξ in the kth-direction. Further, we have that: X̂ p = δpk ek and Ŷ = 0. In view of the above, the transformed
isplacement ûq = Û (F )

qk ek , in (A.5) can be written in following form

µÛ (F )
qk =

δqk

k2 −
kqkk

2(1 − ν)k4 +
ℓ2kqkk

k2 −
ℓ2(δqk + ℓ2kqkk)

1 + ℓ2k2 . (A.6)

he inversion of the transformed solution is accomplished by utilizing well-known results regarding double Fourier
ransforms (see e.g. [61,62]). In particular, we have that

I1 = FT−1
{k−2

} = −
1

2π
(γ + ln r ), I2 = FT−1

{k−4
} =

r2

8π
(γ + ln r ),

I3 = FT−1
{(1 + ℓ2k2)−1

} =
1

2πℓ2 K0.

(A.7)

here γ is the Euler constant and Kn ≡ Kn[r/ℓ] is the modified second kind Bessel function of the nth-order.
ote that the first and second integrals in (A.7) are to be interpreted in the finite-part sense. Accordingly, it may
e readily inferred that

FT−1
{kqkkk−2

} = −[I1],qk =
1

2πr2 (δqk − 2r,qr,k),

FT−1
{kqkkk−4

} = −[I2],qk = −
1

8π

(
(1 + 2γ )δqk + 2r,qr,k + 2δqk ln r

)
,

FT−1
{kqkk(1 + ℓ2k2)−1

} = −[I3],qk =
1

4πℓ4

(
(K2 − K0)δqk − 2r,qr,k K2

)
.

(A.8)

here the differentiation in the above relations is taken w.r.t. the variable x. Gathering the above results and
eglecting rigid body motions, we derive Eq. (10) which is the 2D infinite body Green’s function for the
isplacement field due to a concentrated force. Accordingly, the displacement gradient assumes the following form

U (F )
qk,m =

1
8µπ (1 − ν)r

(
δqmr,k + δkmr,q − (3 − 4ν)δqkr,m − 2r,qr,kr,m

)
−

1
2πµr

(
2ℓ2

r2 − K2

) (
δqmr,k + δkmr,q + δqkr,m − 4r,qr,kr,m

)
+

1 (
δqk − r,qr,k

)
r,m K1.

(A.9)
2πµℓ
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Fig. B.1. Definition of the boundary Γ
′i
ε when the corner point ξ belongs to the original boundary Γ .

A.2. Concentrated couple

The 2D infinite body Green’s function will be now obtained for a concentrated out-of-plane unit couple (M):
Y ≡ Y3 = δ(r) at the x3-direction. The displacement vector is defined as uq = U (M)

q (x; ξ ) denoting the displacement
t point x in the kth-direction due to the unit couple at point ξ . Further, we have that: X̂q = 0 and Ŷ = 1. In view
f the above, the transformed displacement Û (M)

q , in (A.5) assumes the following form

µÛ (M)
q =

i ℓ2eqp

2

(
−

kp

ℓ2k2 +
kp

1 + ℓ2k2

)
. (A.10)

The inversion of the transformed solution (A.10) is based on the results in (A.7). In particular, we have that

FT−1
{i kpk−2

} = −[I1],p =
r,p

2πr
, FT−1

{i kp(1 + ℓ2k2)−1
} = −[I3],p =

r,p

2πℓ3 K1. (A.11)

athering the above results, we derive Eq. (15) which is the 2D infinite body Green’s function for the displacement
eld due to a concentrated couple.

Finally, we note that the Green’s function for a concentrated couple could have been alternatively derived in the
ouple stress theory by setting Y = 0 and assuming a body force of the type Xq = (1/2)eqp∂pδ(r). This is because
he rotation and the displacements are not independent but related through the first of Eqs (3).

ppendix B. Evaluation of the free terms

The coefficient matrix cpq of the free term is evaluated in the context of couple stress elasticity for a non-smooth
oundary. The coefficient matrix depends on the local geometry at the neighbourhood of point ξ to which the integral
quation refers. Here, for simplicity it is assumed that two flat surfaces define the neighbourhood of the corner point
as shown in Fig. B.1. Further, we isolate point ξ as shown in Fig. B.1, so that the arc Γ

′i
ε is the part of the circle

ith radius ε centred at ξ which is inside the domain Ω . Also, we define the closed boundary Γ0 = Γ − Γε + Γ
′i
ε

hich encloses the domain Ω0 (Fig. B.1). The concept of a rigid body translation is employed to determine the
oefficient matrix cpq . For a constant displacement field u⋆

q , we obtain

uq = u⋆
q , ω = 0, tq = 0, s = 0. (B.1)

he coefficient matrix in Eq. (25) is then given as

cqk = −−

∫
T (F )

qk dΓx (B.2)

Γ
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By noting that
∫
Γ0

=
∫
Γ−Γε

+
∫
Γ

′i
ε

and taking ε → 0, we may write

lim
ε→0

∫
Γ0

T (F )
qk dΓx = 0 ⇒ lim

ε→0

∫
Γ−Γε

T (F )
qk dΓx + lim

ε→0

∫
Γ

′i
ε

T (F )
qk dΓx =

−

∫
Γ

T (F )
qk dΓx + lim

ε→0

∫
Γ

′i
ε

T (F )
qk dΓx = 0,

(B.3)

here we have used the fact that the integral over Γ0 vanishes since the point ξ /∈ Ω̄0 (force traction equilibrium).
ombining (B.2) and (B.3), we have that

cqk = lim
ε→0

∫
Γ

′i
ε

T (F )
qk dΓx = lim

ε→0

∫
Γ

′i
ε

Σ (F )
pqk n p dΓx = lim

ε→0

∫ θ2

θ1

Σ (F )
pqk n p εdθ. (B.4)

The integrals in (B.4) can be evaluated analytically using (13) and the following geometric relations according
o Fig. B.1

r = (ε cos θ, ε sin θ ), n = (− cos θ, − sin θ ),

r = |r| = ε, ∂r/∂n = −1, r,i = −ni , on Γ
′i
ε .

(B.5)

Taking the limit as ε → 0, we derive

c11 =
β

2π
−

(1 − 2ν) sin β cos 2γ

4π (1 − ν)
,

c12 = c21 = −
(1 − 2ν) sin β sin 2γ

4π (1 − ν)
,

c22 =
β

2π
+

(1 − 2ν) sin β cos 2γ

4π (1 − ν)
,

(B.6)

where β = θ2 − θ1 and γ = (θ2 + θ1)/2. Note that the expressions (B.6) do not involve the characteristic
length ℓ and also do not coincide with their classical counterparts [63]. The difference in the expressions of
the components of the free term cpq in the classical theory and the couple stress theory is attributed to strong
boundary layer effects that emerge in the case of a non-smooth boundary. In particular, it can be readily verified
that lim ℓ→0

ε→0

∫
Γ

′i
ε

T (F )
qk dΓx ̸= lim ε→0

ℓ→0

∫
Γ

′i
ε

T (F )
qk dΓx . Such boundary layer effects have been also observed by Bogy

and Sternberg [64] in corner problems in couple stress elasticity (see also [38]). Nonetheless, for a smooth boundary
(β = π ), we obtain in both theories that: cpq = 1/2δpq .

Following an analogous procedure, we can determine the free term co in Eq. (26). For a constant displacement
field uq = u⋆

q , we immediately infer that:
∫
Γ T (M)

q dΓx = 0. Further, for a constant rotation field ω = ω⋆, the
corresponding displacement field becomes uq = u⋆

q + emqrmω⋆ with rm = xm − ξm , and tq = 0, s = 0. In this case,
(26) is written as

co = −

∫
Γ

emqrm T (M)
q dΓx − −

∫
Γ

S(M)dΓx . (B.7)

On the other hand, indenting the contour Γ as shown in Fig. B.1, we may write

lim
ε→0

∫
Γ0

(emqrm T (M)
q + S(M)) dΓx = lim

ε→0

∫
Γ−Γε

emqrm T (M)
q dΓx +

∫
Γ−Γε

S(M) dΓx+

+ lim
ε→0

∫
Γ

′i
ε

emqrm T (M)
q dΓx + lim

ε→0

∫
Γ

′i
ε

S(M) dΓx =∫
Γ

emqrm T (M)
q dΓx + −

∫
Γ

S(M) dΓx + lim
ε→0

∫
Γ

′i
ε

S(M) dΓx = 0.

(B.8)

The integral over Γ0 in (B.8) represents the conservation of angular momentum in the body and vanishes since
the point ξ /∈ Ω̄0. Note also that based on the asymptotic properties of the traction T (M)

q (see Table 2) the fourth
integral in (B.8) vanishes too as ε → 0. Hence, combining Eqs. (B.7) and (B.8) and taking into account (19), we
finally derive

co = lim
ε→0

∫
Γ

′i
ε

S(M) dΓx = lim
ε→0

∫
Γ

′i
ε

M (M)
p n p dΓx = lim

ε→0

∫ θ2

θ1

M (M)
p n p εdθ =

β

2π
. (B.9)

Note that for a smooth boundary we have that c = 1/2.
o
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Appendix C. Analytical solution for an elliptical hole

For the determination of the M coefficients {wm, hm, gm}, we employ the modified Schmidt orthogonalization
process as described in [50,52]. Note that summation convention is not used in this section. As a first step, we
construct orthogonal functions F (µ)

m from the functions G(µ)
m in the following way

F (µ)
m (η) =

m∑
i=1

cof(πim)
cof(πmm)

G(µ)
i (η) with πi j =

∫ π

0
G(µ)

i (η)G(µ)
j (η) dη, (C.1)

nd ∫ π

0
F (µ)

m (η)F (µ)
n (η) dη = Jmδmn and Jm =

∫ π

0

[
F (µ)

m (η)
]2

dη. (C.2)

ote that cof(πim) is the cofactor of the element [im]th of the symmetric m × m matrix πi j . From (70), we may
rite

M∑
m=1

gm G(µ)
m (η) =

M∑
m=1

εm F (µ)
n (η) = −

M∑
m=1

hmH(µ)
m (η), (C.3)

here

εm = −
1
Jm

M∑
i=1

[
hi

∫ π

0
H(µ)

i (η)F (µ)
m (η)dη

]
,

nd thus we obtain

gm =

M∑
i=1

ρmi hi , with ρmi = −

M∑
j=m

cof(πmj )
cof(π j j )

1
J j

∫ π

0
H(µ)

i (η)F (µ)
j (η)dη. (C.4)

Substituting (C.4), into Eqs (68) and (69), we obtain
M∑

m=1

[
wm W (σ )

m (η) + hm H∗(σ )
m (η)

]
= −s(η), (C.5)

M∑
m=1

[
wm W (τ )

m (η) + hm H∗(τ )
m (η)

]
= −τ (η), (C.6)

where

H∗(σ )
m (η) = H(σ )

m (η) +

M∑
i=1

ρimG(σ )
i (η) and H∗(τ )

m (η) = H(τ )
m (η) +

M∑
i=1

ρimG(τ )
i (η).

he same procedure is employed in order to construct the orthogonal functions F (τ )
m (η) from H∗(τ ),

F (τ )
m (η) =

m∑
i=1

cof(π∗

im)
cof(π∗

mm)
H∗(τ )

i (η) with π∗

i j =

∫ π

0
H∗(τ )

i (η)H∗(τ )
j (η) dη, (C.7)

here cof(π∗

im) is the cofactor of the element [im]th of the symmetric m × m matrix π∗

i j . In this way, we obtain the
oefficients hm as

hm =

M∑
i=1

ρ∗

miwi + ε∗

m, with ρ∗

mi = −

M∑
j=m

cof(π∗

mj )

cof(π∗

j j )
1
J∗

j

∫ π

0
H∗(τ )

i (η)F (τ )
j (η)dη, (C.8)

and

ε∗

m = −

M∑ cof(π∗

mj )

cof(π∗ )
1
J∗

∫ π

0
τ (η)F (τ )

j (η)dη, J∗

m =

∫ π

0

[
F (τ )

m (η)
]2

dη. (C.9)

j=m j j j
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Substituting (C.8) into Eqs (C.5), we obtain
M∑

m=1

wmW∗(σ )
m (η) = −s(η) −

M∑
i=1

ε∗

i H
∗(σ )
i (η), (C.10)

where

W∗(σ )
m (η) = W (σ )

m (η) +

M∑
i=1

ρ∗

imH
∗(σ )
i (η). (C.11)

Finally, we construct the orthogonal functions F (σ )
m (η) from W∗(σ ) as

F (σ )
m (η) =

m∑
i=1

cof(π∗∗

im )
cof(π∗∗

mm)
W∗(σ )

i (η) with π∗∗

i j =

∫ π

0
W∗(σ )

i (η)W∗(σ )
j (η) dη. (C.12)

In this way, we obtain after some lengthy manipulations the coefficients wm as,2

wm = −

M∑
j=m

{
cof(π∗∗

mj )

cof(π∗∗

j j )
1
J∗∗

j

∫ π

0
s(η)F (σ )

j (η)dη +

M∑
i=1

ε∗

i

∫ π

0
F (σ )

j (η)H∗(σ )
i (η)dη

}
, (C.13)

with

J∗∗

m =

∫ π

0

[
F (σ )

m (η)
]2

dη. (C.14)

Once the coefficients wm are known, hm and gm can be evaluated from (C.4) and (C.8), respectively. Note that all
integrals are evaluated numerically using the standard Gauss–Legendre quadrature.
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