G. Mariano
Conserved domains can be found across distinct phage defence systems
Mariano, G.; Blower, T.R.
Abstract
Bacteria are continuously exposed to predation from bacteriophages (phages) and, in response, have evolved a broad range of defence systems. These systems can prevent the replication of phages and other mobile genetic elements (MGE). Defence systems are often encoded together in genomic loci defined as “defence islands”, a tendency that has been extensively exploited to identify novel antiphage systems. In the last few years, >100 new antiphage systems have been discovered, and some display homology to components of the immune systems of plants and animals. In many instances, prediction tools have found domains with similar predicted functions present as different combinations within distinct antiphage systems. In this Perspective Article, we review recent reports describing the discovery and the predicted domain composition of several novel antiphage systems. We discuss several examples of similar protein domains adopted by different antiphage systems, including domains of unknown function (DUFs), domains involved in nucleic acid recognition and degradation, and domains involved in NAD+ depletion. We further discuss the potential evolutionary advantages that could have driven the independent acquisition of these domains by different antiphage systems.
Citation
Mariano, G., & Blower, T. (2023). Conserved domains can be found across distinct phage defence systems. Molecular Microbiology, 120(1), 45-53. https://doi.org/10.1111/mmi.15047
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 16, 2023 |
Online Publication Date | Feb 24, 2023 |
Publication Date | 2023-07 |
Deposit Date | Mar 10, 2023 |
Publicly Available Date | Mar 10, 2023 |
Journal | Molecular Microbiology |
Print ISSN | 0950-382X |
Electronic ISSN | 1365-2958 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 120 |
Issue | 1 |
Pages | 45-53 |
DOI | https://doi.org/10.1111/mmi.15047 |
Public URL | https://durham-repository.worktribe.com/output/1177400 |
Files
Published Journal Article
(266 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Published Journal Article (EarlyView)
(266 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
EarlyView © 2023 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
You might also like
Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein
(2024)
Journal Article
Genomic and taxonomic evaluation of 38 Treponema prophage sequences
(2024)
Journal Article
Multi-layered genome defences in bacteria
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search