Mofdi El-Amrani
A Bernstein–Bézier Lagrange–Galerkin method for three-dimensional advection-dominated problems
El-Amrani, Mofdi; Kacimi, Abdellah El; Khouya, Bassou; Seaid, Mohammed
Abstract
We present a high-order Bernstein–Bézier finite element discretization to accurately solve three-dimensional advection-dominated problems on unstructured tetrahedral meshes. The key idea consists of implementing a modified method of characteristics to discretize the advection terms in a Bernstein–Bésier finite element framework. The proposed Bernstein–Bézier Lagrange–Galerkin method has been designed so that the Courant–Friedrichs–Lewy condition is strongly relaxed using semi-Lagrangian time discretization. A low complexity procedures in building finite element matrices and load vectors is also achieved in the present work by both the analytical rule and the sum factorization method using the tensorial feature of Bernstein polynomials. Several numerical examples including advection–diffusion equations with known analytical solutions and the viscous Burgers problem are considered to illustrate the accuracy, robustness and performance of the proposed approach. The computed results support our expectations for a stable and highly accurate Bernstein–Bézier Lagrange–Galerkin finite element method for three-dimensional advection-dominated problems.
Citation
El-Amrani, M., Kacimi, A. E., Khouya, B., & Seaid, M. (2023). A Bernstein–Bézier Lagrange–Galerkin method for three-dimensional advection-dominated problems. Computer Methods in Applied Mechanics and Engineering, 403, Article 115758. https://doi.org/10.1016/j.cma.2022.115758
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 29, 2022 |
Online Publication Date | Nov 15, 2022 |
Publication Date | Jan 1, 2023 |
Deposit Date | Apr 5, 2023 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Print ISSN | 0045-7825 |
Electronic ISSN | 1879-2138 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 403 |
Article Number | 115758 |
DOI | https://doi.org/10.1016/j.cma.2022.115758 |
Public URL | https://durham-repository.worktribe.com/output/1175376 |
You might also like
A novel approach for modelling stress fields induced by shallow water flows on movable beds
(2025)
Journal Article
A fractional time-stepping method for unsteady thermal convection in non-Newtonian fluids
(2024)
Journal Article
High-order spline finite element method for solving time-dependent electromagnetic waves
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search