Skip to main content

Research Repository

Advanced Search

Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK

Tamas, Alexandra; Holdsworth, Robert E.; Tamas, Dan M.; Dempsey, Edward D.; Hardman, Kit; Bird, Anna; Underhill, John R.; McCarthy, Dave; McCaffrey, Ken J.W.; Selby, David

Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK Thumbnail


Authors

Alexandra Tamas

Dan M. Tamas

Edward D. Dempsey

Kit Hardman

Anna Bird

John R. Underhill

Dave McCarthy



Abstract

Constraining the age of formation and repeated movements along fault arrays in superimposed rift basins helps us to better unravel the kinematic history as well as the role of inherited structures in basin evolution. The Inner Moray Firth Basin (IMFB, western North Sea) overlies rocks of the Caledonian basement, the pre-existing Devonian–Carboniferous Orcadian Basin, and a regionally developed Permo–Triassic North Sea basin system. IMFB rifting occurred mainly in the Upper Jurassic–Lower Cretaceous. The rift basin then experienced further regional tilting, uplift and fault reactivation during the Cenozoic. The Devonian successions exposed onshore along the northwestern coast of IMFB and the southeastern onshore exposures of the Orcadian Basin at Sarclet preserve a variety of fault orientations and structures. Their timing and relationship to the structural development of the wider Orcadian and IMFB are poorly understood. In this study, drone airborne optical images are used to create high-resolution 3D digital outcrops. Analyses of these images are then coupled with detailed field observations and U-Pb geochronology of syn-faulting mineralised veins in order to constrain the orientations and absolute timing of fault populations and decipher the kinematic history of the area. In addition, the findings help to better identify deformation structures associated with earlier basin-forming events. This holistic approach helped identify and characterise multiple deformation events, including the Late Carboniferous inversion of Devonian rifting structures, Permian minor fracturing, Late Jurassic–Early Cretaceous rifting and Cenozoic reactivation and local inversion. We were also able to isolate characteristic structures, fault kinematics, fault rock developments and associated mineralisation types related to these events.

Citation

Tamas, A., Holdsworth, R. E., Tamas, D. M., Dempsey, E. D., Hardman, K., Bird, A., Underhill, J. R., McCarthy, D., McCaffrey, K. J., & Selby, D. (2023). Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK. Remote Sensing, 15(3), Article 695. https://doi.org/10.3390/rs15030695

Journal Article Type Article
Acceptance Date Jan 23, 2023
Online Publication Date Jan 24, 2023
Publication Date 2023
Deposit Date Jun 8, 2023
Publicly Available Date Jun 8, 2023
Journal Remote Sensing
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 15
Issue 3
Article Number 695
DOI https://doi.org/10.3390/rs15030695
Public URL https://durham-repository.worktribe.com/output/1170524

Files

Published Journal Article (52.9 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






You might also like



Downloadable Citations