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ABSTRACT

Current and future imaging surveys require photometric redshifts (photo-zs) to be estimated for millions of galaxies. Improving the
photo-z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the syner-
gies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts.
We used a multi-task learning (MTL) network to improve broadband photo-z estimates by simultaneously predicting the broadband
photo-z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training
field, which also enables better photo-z predictions for the galaxies without narrow-band photometry in the wide field. This technique
was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method
predicts photo-zs that are 13% more precise down to magnitude iAB < 23; the outlier rate is also 40% lower when compared to the
baseline network. Furthermore, MTL reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomo-
graphic bins with z > 1. Applying this technique to deeper samples is crucial for future surveys such as Euclid or LSST. For simulated
data, training on a sample with iAB < 23, the method reduces the photo-z scatter by 16% for all galaxies with iAB < 25. We also studied
the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which reduces the photo-z
scatter by 20% in the COSMOS field.
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1. Introduction
Over the last few decades, multi-band wide imaging surveys
have been driving discoveries, demonstrating the power of large
datasets to enable precision cosmology. Obtaining precise pho-
tometric redshifts is crucial for exploiting large galaxy imaging
surveys (Salvato et al. 2019), and they are a limiting factor
in the accuracy of cosmology measurements that use galaxies
(Knox et al. 2006). Current and upcoming imaging surveys such
⋆ This paper is published on behalf of the Euclid Consortium.

as the Dark Energy Survey (DES; The Dark Energy Survey
Collaboration 2005), the Kilo-Degree Survey (KiDS; de Jong
et al. 2013), Euclid (Laureijs et al. 2011), and the Rubin Obser-
vatory Legacy Survey of Space and Time (LSST; LSST Science
Collaboration 2009) critically depend on robust redshift esti-
mates to obtain reliable science results (Blake & Bridle 2005).

With larger imaging surveys (as the quality and number
of photometric observations increase), the photo-z performance
requirements, both in terms of bias and precision, have become
increasingly stringent in response to a need to reduce the
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uncertainties in the science measurements. As an example, the
analysis of the first year of DES data (DES Y1) had a photo-z
precision requirement σzp−zs < 0.12 (Sánchez et al. 2014), with
σzp−zs being the standard deviation of the residuals between the
photometric redshift, zp, and the spectroscopic redshift, zs (as a
proxy of the true redshift). In order to exploit the constraining
power of LSST, it is required that the mean fractional photo-z
bias |⟨∆z⟩| < 0.003, with ∆z := (zp − zs)/(1 + zs), and the scaled
photo-z scatter σ∆z < 0.02 (Schmidt et al. 2020), which cor-
responds to photo-zs that are around three times more precise
than in DES Y1. Similarly, for Euclid, the scaled photo-z bias is
required to be below 0.002 and σ∆z < 0.05 (Laureijs et al. 2011).

The increasingly stringent requirements on the photo-z mea-
surements have triggered extensive investigation efforts dedi-
cated to improving photo-z estimation methodologies. Therefore,
there are many different photo-z codes, which can be classified
into two main approaches: the so-called template-fitting meth-
ods (e.g. LePhare: Arnouts & Ilbert 2011; BPZ: Benítez 2011;
and ZEBRA: Feldmann et al. 2006) and data-driven (machine-
learning) methods (e.g. ANNz: Collister & Lahav 2004; ANNz2:
Sadeh et al. 2016; tpz: Carrasco Kind & Brunner 2013, Skynet:
Bonnett 2015, and spiderZ: Jones & Singal 2017). These meth-
ods commonly only use the measured photometry to produce
photo-z estimates. Furthermore, there is a wealth of techniques
for improving the photo-z performance, such as including galaxy
morphology (Soo et al. 2018), using Gaussian processes (Gomes
et al. 2018; Soo et al. 2021), implementing ‘pseudo-labelling’
semi-supervised approaches to determine the underlying struc-
ture of the data (Humphrey et al., in prep.), and directly pre-
dicting the photo-z from astronomical images (Pasquet-Itam &
Pasquet 2018; Pasquet et al. 2019; Chong & Yang 2019).

The broadband photo-z performance is limited by the reso-
lution and the wavelength coverage provided by the photometric
filters. Narrow-band photometric surveys are in between spec-
troscopy and broadband photometry (Benitez et al. 2014; Martí
et al. 2014; Eriksen et al. 2019). They are imaging surveys with
a higher wavelength resolution than broadband surveys, but they
typically cover smaller sky areas due to the increased telescope
time needed to cover the same wavelength range. In this paper
we use multi-task learning (MTL; Caruana 1997) and narrow-
band data to improve broadband photo-z estimates. Multi-task
learning is a machine-learning methodology in which the model
benefits from predicting multiple related tasks together, for
example a network that predicts the animal type (e.g. elephant,
dog, dolphin, or unicorn) and its weight. In this example, the
network learns the correlations between each animal class and
how heavy they are (e.g. an elephant is heavier than a dog),
and such correlations are used to improve the final predictions in
both tasks.

In astronomy, data that could be helpful for improving the
photo-z performance often exist, for example photometry in sev-
eral bands. However, such data are not always available for the
complete wide field, preventing us from using it. With MTL, we
can utilise these data to improve the photo-z predictions without
explicitly providing them as input. Particularly, we implemented
an MTL neural network that predicts the photo-z and the narrow-
band photometry of a galaxy from its broadband photometry.
The narrow-band data are used to provide ground-truth labels to
train the auxiliary task of reconstructing the narrow-band pho-
tometry (Liebel & Körner 2018). Therefore, we only need it to
train the network, and we can evaluate the photo-z of any galaxy
with only its broadband photometry. In this way, the data avail-
able in certain fields can be exploited to improve the photo-z
estimations in other fields.

We tested the method with data from the Physics of the
Accelerating Universe Survey (PAUS). It is a narrow-band imag-
ing survey carried out with the PAUCam instrument (Castander
et al. 2012; Padilla et al. 2016, 2019), a camera with 40 narrow
bands that cover the optical spectrum (Casas et al. 2016). The
method could also be applied to other narrow-band surveys such
as the Javalambre Physics of the Accelerating Universe Survey
(J-PAS; Benitez et al. 2014).

The paper is structured as follows. In Sect. 2 we present the
data used throughout the paper. Section 3 introduces MTL and
the method developed and tested in this work. In Sect. 4 we show
the performance of the photo-z method in the COSMOS field,
including bias, scatter, outliers, and the photo-z distributions.
The performance on a deeper galaxy sample is tested in Sect. 5
using simulated galaxies. Finally, we use self-organising maps
(SOMs) to explore the photo-z distribution of COSMOS galax-
ies in colour space (Sect. 6) and to gain a better understanding of
the underlying mechanism of our method (Sect. 7).

2. Data

In this section we present the PAUS data (Sect. 2.1) and the
photometric redshift galaxy sample (Sect. 2.2). The broadband
data and the spectroscopic sample are introduced in Sect. 2.3
and Sect. 2.4, respectively, while Sect. 2.5 shows the galaxy
simulations used in the paper.

2.1. PAUS data

PAUS data are taken at the William Herschel Telescope (WHT),
at the Observatorio del Roque de los Muchachos in La Palma
(Canary Islands). Images are taken with the PAUCam instrument
(Castander et al. 2012; Padilla et al. 2019), an optical camera
equipped with 40 narrow bands covering a wavelength range
from 4500 to 8500 Å (Casas et al. 2016). The narrow-band fil-
ters have a 130 Å full width at half maximum and a separation
between consecutive bands of 100 Å. They are mounted in five
trays with eight filters per tray that can be exchanged and placed
in front of the CCDs. The narrow-band filter set effectively pro-
vides a high-resolution photometric spectrum (R ∼ 50). This
allows PAUS to measure high-precision photo-zs to faint mag-
nitudes (iAB < 23) while covering a large sky area (Martí et al.
2014). In this work we use the full pass-band filter information1.

With a template-fitting algorithm, PAUS reaches a photo-z
precision σz/(1 + z) = 0.0035 for the best 50% of the sample
(Eriksen et al. 2019). Similar precision is obtained with Delight
(Soo et al. 2021), a hybrid template-machine-learning photomet-
ric redshift algorithm that uses Gaussian processes. The PAUS
photo-z precision was improved further with a deep-learning
algorithm that reduces the scatter by 50% compared to the
template-fitting method in Eriksen et al. (2020). Furthermore,
with a combination of PAUS narrow bands and 26 broad and
intermediate bands covering the UV, visible, and near infrared
spectral range, Alarcon et al. (2021) presented an unprecedented
precise photo-z catalogue for COSMOS (Scoville et al. 2007)
with σz/(1 + z) = 0.0049 for galaxies with iAB < 23. The excel-
lent PAUS photo-z precision enables studies of intrinsic galaxy
alignments and three-dimensional galaxy clustering (Johnston
et al. 2021a), as well as determining galaxy properties (Tortorelli
et al. 2021) and measuring the D4000 Å spectral break (Renard
et al., in prep.).
1 Similar filter functions to the ones used in the paper are available at
the PAUS website www.pausurvey.org
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PAUS has been observing since the 2015B semester,
and as of 2021B, PAUS has taken data during 160 nights. It
partially covers the Canada-France-Hawaii Telescope Legacy
Survey (CFHTLS) fields2 W1, W2, and W3, as well as the full
COSMOS field3. In the W2 field, so far PAUS has observed
in the overlapping region with the GAMA 9-hour field4 (G09).
Currently, PAUS data have a 40 narrow-band coverage of
10 deg2 in each of W1 and G09, 20 deg2 in W3, and 2 deg2 in
COSMOS. The PAUS data are stored at the Port d’Informació
Científica (PIC), where the data are processed and distributed
(Tonello et al. 2019). This paper uses data from the COSMOS
field (Scoville et al. 2007), which were specifically taken in
the semesters 2015B, 2016A, 2016B, and 2017B. The com-
plete PAUS photometric catalogue in COSMOS comprises
64 476 galaxies to iAB < 23 in 40 narrow-band filters. This
corresponds to approximately 12.5 million galaxy observations
(5 observations per galaxy and narrow-band filter).

Two methods for extracting the galaxy photometry have been
developed for PAUS: a forced aperture algorithm (MEMBA) and
a deep-learning-based pipeline (Lumos; Cabayol-Garcia et al.
2020; Cabayol et al. 2021). In this study we have found that the
resulting photo-z performance with both photometric approaches
is very similar. In the COSMOS field, the parent detection cat-
alogue is provided by Laigle et al. (2016) and the photometry
calibration is relative to the Sloan Digital Sky Survey (SDSS)
stars (Castander et al., in prep.). A brief description of the
photometric calibration can be found in Eriksen et al. (2019).

2.2. Photometric redshift sample

Throughout the paper we also use the high-precision photometric
redshifts from Alarcon et al. (2021, PAUS+COSMOS hereafter).
They were estimated with a template-fitting method modelling
the spectral energy distributions (SEDs) as a linear combination
of emission line and continuum templates to then compute the
Bayes evidence by integrating over the linear combinations. In
addition to the PAUS narrow bands, the PAUS+COSMOS cat-
alogue uses 26 broad and intermediate bands covering the UV,
visible, and near-infrared spectrum (see Sect. 2 in Alarcon et al.
2021, for more details). The PAUS+COSMOS photo-zs reach a
precision of σz/(1 + z) = 0.0036 and σz/(1 + z) = 0.0049 for
galaxies at iAB < 21 and iAB < 23, respectively. These photo-
zs are more precise and less biased than those from Laigle et al.
(2016), which use a combination of 30 broad-, intermediate-, and
narrow-band filters.

2.3. Broadband data

The broadband data used in this paper are from Laigle et al.
(2016, COSMOS2015 hereafter), which includes the u-band
from the Canada-France-Hawaii Telescope (CFHT)/MegaCam
and the Subaru BVriz filters. We carry out a spatial matching of
COSMOS2015 and PAUS galaxies within 1′′. Then, we apply a
cut on magnitude iAB < 23 and on redshift z < 1.5, which results
in a catalogue with around 33 000 galaxies of which approx-
imately 9000 have spectroscopic redshifts. The redshift cut is
prompted by the photo-z distribution in the PAUS+COSMOS
catalogue, with very few galaxies with z > 1.5 (Fig. 1).

2 http://www.cfht.hawaii.edu/Science/CFHTLS_Y_WIRCam/
cfhtlsdeepwidefields.html
3 http://cosmos.astro.caltech.edu/
4 https://www.astro.ljmu.ac.uk/~ikb/research/gama_
fields/
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Fig. 1. Redshift distributions for the COSMOS spectroscopic sample
(red line) and the full (spectroscopic and photo-z) COSMOS sample.

2.4. Spectroscopic galaxy sample

To train the neural network, one needs a galaxy catalogue with
known redshifts. We used the zCOSMOS Data Release (DR) 3
bright spectroscopic data (Lilly et al. 2007), which cover 1.7 deg2

of the COSMOS field. The catalogue covers a magnitude range
of 15 < iAB < 23 and a redshift range of 0.1 < z < 1.2. We only
keep redshifts with a confidence class (con f ) of 3 < con f < 5,
which leads to a catalogue with ∼9400 galaxies. We extended the
spectroscopic sample with a compilation of 2693 redshifts from
Alarcon et al. (2021). This compilation includes redshifts from
C3R2 DR1 and DR2 (Masters et al. 2017, 2019), 2dF (Colless
et al. 2001), DEIMOS (Hasinger et al. 2018), FMOS (Kashino
et al. 2019), LRIS (Lee et al. 2018), MOSFIRE (Kriek et al.
2015), MUSE (Urrutia et al. 2019), Magellan (Calabrò et al.
2018), and VIS3COS (Paulino-Afonso et al. 2018), with a quality
cut to keep only those objects with a reliable measurement.

Figure 1 shows the redshift distribution of the COSMOS
spectroscopic sample (red) and the full PAUS sample in the
COSMOS field (blue), where the redshift is defined as the spec-
troscopic redshift if this is available and as the PAUS+COSMOS
photo-z otherwise. Including the PAUS+COSMOS photo-z is
particularly relevant for galaxies with z > 1, where there are very
few spectroscopic measurements.

2.5. Galaxy mocks

In Sect. 5 we also use the Flagship galaxy simulations described
in Castander et al. (in prep.). The Flagship galaxy catalogue has
been developed to study the performance of the Euclid mission.
The mock catalogue populates the halos detected in the Euclid
Flagship N-body simulation (Potter et al. 2017), which is a large
two trillion particles simulation on a box of 3780 h−1Mpc, and
a mass resolution of mp = 2.4 × 109 h−1M⊙. The N-body sim-
ulation uses a cosmological model with parameters similar to
the Planck 2015 cosmology (Planck Collaboration XIII 2016).
Halos are identified with the ROCKSTAR halo finder (Behroozi
et al. 2013). Galaxies are assigned to the halos using a hybrid
halo occupation distribution and abundance matching technique
similar to the one used for the MICE catalogues described in
Carretero et al. (2014). Galaxies are divided into central and
satellites. Each halo contains a central and a number of satel-
lites given by their halo occupation. Galaxies are also tagged in
three colour types: blue, green, and red. The relative abundance
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of central and satellites as a function of colour type and abso-
lute magnitude is constrained by the observed colour-magnitude
distribution and the clustering as a function of colour at low
redshift. At higher redshift only observed colour distributions
are used. Each galaxy is assigned a SED, including its extinc-
tion, from the COSMOS SED library (e.g. Ilbert et al. 2013),
which includes SED templates from Polletta et al. (2007) and
additional blue templates from Bruzual & Charlot (2003). In
order to have a more continuous distribution of galaxy magni-
tudes and colours, the SED assigned to each galaxy is a linear
combination of two consecutive templates in the COSMOS tem-
plate library. Emission lines are then added to the SED of each
galaxy. The Hα flux is computed from the rest-frame ultra-violet
flux of each galaxy template following Kennicutt (1998). The
Hα fluxes are then re-adjusted to make them follow the Pozzetti
et al. (2016) model 1 and model 3 distributions. The Hβ flux
is computed from the Hα flux assuming case B recombination
(Osterbrock & Ferland 2006). The other emission line fluxes
([OII], [OIII], [NII], and [SII]) are computed following relations
obtained from observed distributions. The emission line fluxes
are added to the continuum assuming a Gaussian distribution of
width given by the galaxy magnitude and the Faber-Jackson or
Tully-Fisher relation. Finally, the SEDs containing the emission
lines are convolved with the filter transmission curves to produce
the expected observed fluxes. This prescription is followed to
generate both broad- and narrow-band photometry. The Flagship
catalogue is a property of the Euclid Consortium and is avail-
able at CosmoHub5 (Carretero et al. 2017; Tallada et al. 2020), a
web application based on Hadoop to interactively distribute and
explore massive cosmological datasets.

3. Multi-task neural network to improve broadband
photo-zs

In this section we describe MTL (Sect. 3.1) and present the
networks and training procedures used throughout the paper
(Sect. 3.2).

3.1. Multi-task learning

Deep-learning algorithms consist of training a single or an
ensemble of models to accurately perform a single task, for
example predicting the redshift. Multi-task learning is a train-
ing methodology that aims to improve the performance on a
single task by training the model on multiple related tasks simul-
taneously (Caruana 1997). One can think of MTL as a form
of inductive transfer, where the knowledge that the network
acquires from one task introduces an inductive bias to the model,
making it prefer certain hypotheses over others. A simple peda-
gogical example is a network to classify cats and dogs. If we
include a secondary task to classify the shape of the ears in,
for example spiky or rounded, the network will make correla-
tions between the ear shapes and the animal class, in such a
way that the predicted ears shape will also affect the cat-dog
classification. This kind of network has already been success-
fully applied in other fields, such as video processing (Song
et al. 2020) and medical imaging (Moeskops et al. 2017), where
in the latter case a single network is trained to segment six
tissues in brain images, the pectoral muscle in breast images,
and the coronary arteries. There are also successful implemen-
tations in astrophysics. Examples include, for example, Parks
et al. (2018), which characterises the strong HI Lyα absorption in

5 https://cosmohub.pic.es

Fig. 2. Top: baseline network architecture. The input contains five
colours that propagate through six fully connected layers. Each layer is
followed by a dropout layer, which is represented by a yellow-crossed
circle. Bottom: MTL network. This builds on the baseline network
and adds an extra output layer for the additional task of predicting the
narrow-band photometry.

quasar spectra simultaneously predicting the presence of strong
HI absorption and the corresponding redshift zabs and the HI col-
umn density. Also, Cunha & Humphrey (2022) describe SHEEP,
a machine-learning pipeline for the classification of galaxies,
quasi-stellar objects, and stars from photometric data. Broadly
speaking, there are two types of MTL-network architectures,
called soft- and hard-parameter sharing (Zhang & Yang 2021).
In the former, each task has its parameters, which are regu-
larised to be similar amongst tasks. For the latter, the hidden
layers of the network are shared between tasks, while keeping
task-specific layers separate. Hard-parameter sharing is the most
common MTL architecture and it is the one used in this paper.

3.2. Model architecture and training procedures

In our analysis we used mixture density networks (MDNs) to
predict the photo-z probability distribution as a linear com-
bination of N independent Gaussians (D’Isanto & Polsterer
2018; Eriksen et al. 2020). The network predicts the mean
and the standard deviation of N distributions, together with
N additional mixing coefficients (α) weighting the relative
importance of each Gaussian component to the combined
probability distribution, so that

∑i=N
i=0 αi = 1.

Figure 2 shows the two MDNs used in this paper, both
of them predicting the photo-z probability distribution p(z) as
the combination of three independent Gaussian distributions.
The top panel presents the baseline network, a single-task net-
work mapping the broadband photometry to the photometric
redshifts. It concatenates six fully connected layers with param-
eters 5:300:500:1000:500:300:9, where the numbers correspond
to the number of nodes in the layers. Therefore, the first contains
five nodes, corresponding to the uBVriz broadband colours. The
last layer consists of nine output parameters corresponding to
the mean (z), the standard deviation (σi), and the mixing coeffi-
cients, α, of the three Gaussians building the p(z). Each layer is
followed by a 2% dropout layer (Srivastava et al. 2014), a regu-
larisation method in which several nodes are randomly ignored
during the training phase.

The bottom panel in Fig. 2 represents the MTL network
introduced in this paper, which includes the additional task
of predicting the PAUS narrow-band photometry using a hard
parameter-sharing architecture (Fig. 2). The core architecture is
the same as that of the baseline network (upper panel) but this
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network contains an extra output layer for the additional task of
predicting the narrow-band photometry.

The photo-z loss function of both networks is the negative
log-likelihood:

Lz B
N∑

i=1

log(αi) −
(zi − zs)2

σ2
i

− 2 log (σi)
 . (1)

The ground-truth redshift labels are the spectroscopic redshifts
(zs) as defined in Sect. 2.4 and the summation is over the
Gaussian components. For some training configurations, we also
used high-precision photo-zs (Sect. 2.2) as ground-truth labels
to extend the photo-z training sample beyond the spectroscopic
sample.

The MTL network enables including information from the
galaxy SED, while extending the training sample to galaxies
without spectroscopic redshift but with narrow-band photome-
try. The two tasks share internal representations when predicting
the photo-z and the narrow-band photometry simultaneously;
thus, the non-spectroscopic galaxies indirectly affect the training
of the photo-z prediction.

The training of the narrow-band is addressed with a least
absolute deviation loss function,

LNB B

∑
i

∣∣∣∣NBpred
i − NBobs

i

∣∣∣∣
N − 1

, (2)

where NBpred
i and NBobs

i are the predicted and observed narrow-
band colours in the ith filter, respectively, and N is the number of
narrow bands. We also tested other alternatives, for example the
mean-squared error, but this was hindering the network’s con-
vergence and we decided on the absolute-mean error. Another
alternative was to predict the probability distribution of the
narrow-band fluxes using a MDN as well, but this did not
resulted in better photo-z estimations.

Consequently, there are the following two training method-
ologies. The first is zs: This is the usual training that maps
the broadband photometry to photo-z using spectroscopic red-
shifts as ground-truth redshifts and a negative log-likelihood loss
function (Eq. (1)).

The second is zs+NB: This methodology includes MTL. It
maps the broadband photometry to photo-z and narrow-band
photometry, and therefore the loss function is the mean of the
combined negative log-likelihood loss (Eq. (1)) and narrow-band
reconstruction (Eq. (2)) tasks for all galaxies (N) for which the
loss is computed as

LNB+zs B
1
N

N∑
j=1

[
L

j
z +L

j
NB

]
. (3)

We only used galaxies with spectroscopic redshift to train the
photo-z predictions, while all galaxies with narrow-band obser-
vations trained the narrow-band reconstruction. In general, one
can also weight the two terms in the loss functions. Testing dif-
ferent values, we found the photo-z scatter to have a minimum in
a wide range of values around equal weighting.

Furthermore, we considered two variants in the training
procedure to explore the possibility of using high-precision pho-
tometric redshifts (Sect. 2.2) to train the networks: the first is
zs + zPAUS: This is a variation of the zs method. The train-
ing sample extends to galaxies having a high-precision photo-z
estimate in the PAUS+COSMOS catalogue. For galaxies with

spectroscopy, we use the spectroscopic redshift as ground-truth
while for the rest of the training sample, the PAUS+COSMOS
photo-z is used to train the network.

The second is zs+NB+zPAUS: This is a variation of the zs+NB
method, and it also extends the training sample with galaxies
with a high-precision photo-z estimate in the PAUS+COSMOS
catalogue. In contrast to the zs+NB method, here all galaxies
are used to train the photo-z prediction and the narrow-band
photometry reconstruction. The ground-truth redshift labels
are the spectroscopic redshifts if available and otherwise, the
PAUS+COSMOS photo-z.

The networks are implemented in PyTorch (Paszke et al.
2017). All the training procedures use an Adam optimiser
(Kingma & Ba 2015) for 100 epochs with an initial learning rate
of 10−3 that reduces by a factor of ten every 50 epochs.

4. Photo-z performance in the COSMOS field

In this section we show the photo-z performance of our method
on galaxies with iAB < 23 and z < 1.5 in the COSMOS field. We
study the effect that MTL has on the dispersion (Sect. 4.2) and
the bias (Sect. 4.3) of the predicted photo-zs.

4.1. Photo-z performance metrics

To evaluate the accuracy and precision of the photo-z estimates,
we define

∆z B (zp − zt) / (1 + zt) , (4)

where zp and zt are the mean predicted photo-z and the ground-
truth redshift, respectively. The bias and the dispersion are
defined as the median and σ68 of ∆z, respectively, where we
define σ68 as

σ68 B
1
2

[Q84(∆z) − Q16(∆z)] , (5)

and Q16(∆z), Q84(∆z) are the 16th and 84th percentiles of the ∆z
distribution. We also include the metric

σNMAD B 1.4826 ×median [ |∆z −median(∆z)| ] (6)

used in the Euclid photo-z challenge paper (Desprez et al. 2020).
To evaluate the performance on the full COSMOS catalogue,

we define the ground-truth redshift as the spectroscopic red-
shift if available and otherwise, as the PAUS+COSMOS photo-z
(Sect. 2.2)6. If it is not specified by the method, our networks
are trained with spectroscopic redshifts only. For the perfor-
mance evaluation, however, the PAUS+COSMOS photo-zs are
also used, but only to evaluate the photo-z of galaxies from the
full COSMOS catalogue that do not have a spectroscopic red-
shift estimate. The predicted photo-zs are defined as the mean
of the redshift probability distribution provided by the network
(Sect. 3.2).

In order to estimate the photo-zs of the complete COSMOS
catalogue, the networks are trained independently ten times with
∼11 000 spectroscopic galaxies in each iteration, which roughly
corresponds to 90% of the sample. Each network is used to

6 The PAUS+COSMOS photo-zs used to evaluate the precision of non-
spectroscopic galaxies (Sect. 2.2) also have an associated dispersion.
This corresponds to approximately 4% lower photo-z scatter than that
obtained for very bright galaxies and around 1% lower at the faintest
end.
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Table 1. Photo-z dispersion σ68 × 100 for the different network configurations.

Precision (zs sample) Precision (COSMOS) Outliers (zs sample) Outliers (COSMOS)

zs 2.00 (1.92) 2.43 (2.30) 0.6 1.1
zs+NB 1.76 (1.68) 2.21 (2.04) 0.5 0.8

zs + zPAUS 1.68 (1.62) 2.03 (1.91) 0.5 0.6
zs + zPAUS+NB 1.63 (1.58) 1.99 (1.86) 0.5 0.6

Notes. The second column displays results restricted to the spectroscopic sample, while the third column shows the results for the full COSMOS to
iAB < 23. For the full COSMOS sample results, the PAUS+COSMOS high-precision photo-zs are used as ground-truth redshifts when spectroscopy
is not available. The numbers in parenthesis corresponds to the σNMAD. The fourth and fifth columns present the percentage of photo-z outliers on
the COSMOS spectroscopic and complete sample, respectively.

evaluate the corresponding 10% of excluded galaxies in such a
way that the ensemble of networks evaluates the full COSMOS
catalogue.

Including MTL extends the training sample to about 40 000
galaxies, which corresponds approximately 3.5 times more
galaxies than in the spectroscopic sample. In order to evaluate
the full COSMOS sample, we trained the network seven inde-
pendent times with 85% of the spectroscopic galaxies and 85%
of the non-spectroscopic sample. This corresponds to around
11 000 galaxies with spectroscopy and 25 000 without. We
ensured that the fraction of galaxies with spectroscopic redshifts
in each iteration is similar by sampling without replacement the
same number of spectroscopic galaxies in each iteration.

4.2. Photo-z dispersion

Table 1 presents the photo-z precision for the COSMOS spec-
troscopic sample and the complete COSMOS sample using
the four different training procedures presented in Sect. 3.2.
These results are presented in more detail in Fig. 3, which shows
the photo-z dispersion in equally populated magnitude and
redshift bins with the same four methodologies. The solid black
line corresponds to the baseline network mapping broadband
photometry to photo-z (method zs in Sect. 3.2). This method is
trained on the spectroscopic sample and provides a σ68 = 0.020
for the full sample. These are quite precise and accurate redshifts
compared to other broadband redshift estimates in the same
field. In Hildebrandt et al. (2009), redshifts in the D2 CFHT
deep field (Coupon et al. 2009), which overlaps with COSMOS,
were estimated with the template-fitting code BPz (Benítez
2011) using the CFHT ugriz filter set. Their photo-z precision
is σ68 = 0.0498, while for the same galaxy sub-sample our
network provides σ68 = 0.0187. Here neither the methodology
nor the input data are the same, but having these CFHT photo-z
estimates as a reference improves our photo-z baseline network
performance. Here neither the methodology nor the input data
are the same, but the CFHT photo-zs are a reference to compare
the performance of our baseline network with.

In Fig. 3 we show the MTL training (method zs+NB in
Sect. 3.2) that uses all galaxies with PAUS photometry to
train the narrow-band reconstruction and only those with spec-
troscopy to train the photo-z prediction. This extends the training
sample of the shared layers (see the bottom panel of Fig. 2) from
around 12 000–30 000 galaxies. This method provides a preci-
sion of σ68 = 0.0176, corresponding to a 13% improvement with
respect to the baseline methodology (solid black line). Moreover,
the additional PAUS galaxies for the narrow-band reconstruction
loss includes a more homogeneous colour-space coverage in the
training sample. In Sect. 6 we discuss the underlying mechanism
that causes MTL with PAUS to improve the photo-zs.

21.0 21.5 22.0 22.5 23.0
iauto

0.015

0.020

0.025

0.030

0.035

68
[

z]

zs
zs+NB
zs + zPAUS
zs + zPAUS+NB

0.2 0.4 0.6 0.8 1.0 1.2 1.4
zs + zPAUS

0.02

0.03

0.04

0.05

0.06

0.07

68
[

z]

Fig. 3. Photo-z dispersion in equally populated magnitude differential
bins to iAB < 23 (top) and equally spaced redshift bins to z < 1.5
(bottom). Each line corresponds to a different training procedure (see
Sect. 3.2). While the black line corresponds to a baseline training,
the other coloured lines include MTL (red and green lines) and data
augmentation with photo-zs from the PAUS+COSMOS catalogue as
ground-truth redshifts (blue and green lines).

The blue dotted line in Fig. 3 also corresponds to a direct
mapping of the broadband photometry to photo-zs. However,
in contrast to the solid black line, this case is trained on
an extended sample including galaxies without spectroscopic
redshifts (method zs + zPAUS in Sect. 3.2), for which the
PAUS+COSMOS photo-z measurement is used as a ground-
truth redshift label in the training. It shows a precision of σ68 =
0.0168, which corresponds to a 18% improvement with respect
to the baseline training.

The best photo-z performance is achieved combining MTL
and photo-z data augmentation with PAUS+COSMOS data
(method zs+NB+zPAUS in Sect. 3.2), which corresponds to the
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Fig. 4. Photo-z bias in equally populated redshift bins (left) and equally populated i-band magnitude bins (right). The grey area corresponds to the
Euclid photo-z bias requirement of ∆z = 0.002.

dotted green line in Fig. 3. This method gives a 22% improve-
ment with respect to the baseline network, with a precision of
σ68 = 0.0163.

In addition to uncertainties due to limited sample size (sam-
ple variance), our findings could also be affected by the intrinsic
galaxy distribution being different at different parts of the sky
(cosmic variance). To ensure that our results are not due to
imprinting cosmic variance from the training to the test field, we
tested our methods on two independent and spatially separated
fields. These two fields are ∼2 deg2 and contain galaxies from the
Flagship simulations to i < 23 (Sect. 2.5). All the networks have
been trained with 30 000 galaxies from the train field, and later
evaluated on 20 000 galaxies different galaxies from the train and
test fields (making sure that there is no overlap between the train-
ing and test galaxies in the train field). We estimated the sample
variance of each of these fields by making 1000 bootstrap reali-
sations and it is a sub-percent error. With the baseline zs method,
we obtain a 2% change in the photo-z precision between the train
and test fields. Repeating the same test with the zs+zPAUS+NB
method, we obtain a 3% change in the photo-z precision between
fields, similar to the baseline case. These changes are much lower
than the photo-z improvement we obtain with the MTL imple-
mentations (e.g. 22% for the zs+zPAUS+NB method), suggesting
that such improvements are not caused by cosmic variance.

4.3. Photo-z bias and outlier rate

In this subsection we show the bias and the outlier rate for the
photo-z predictions with the MTL networks and the baseline
broadband network. The left panel in Fig. 4 shows the photo-
z bias in equally populated redshift bins in the redshift range
0.1 < zt < 1.5. We excluded the first redshift bin from the anal-
ysis since there are almost no galaxies with zt < 0.07, which
caused a bias at very low redshift7. The shaded area corresponds
to the Euclid photo-z bias requirement <0.002 (Laureijs et al.
2011). Overall, for zt < 1 the four methods presented in Sect. 3.2
are unbiased at the level of < 0.002. However, the zs and the
zs+NB are still showing a trend within the 0.2% bias range,
where low-redshift galaxies tend to be biased positive and the
7 There are training mechanisms to deal with unbalanced training sam-
ples such as up-weighting the contribution of unbalanced class objects
in the training or oversampling synthetic data from the unbalanced orig-
inal ones (Yanminsun et al. 2011). However, the number of objects with
z < 0.07 is too small to efficiently apply these techniques and there are
very few galaxies affected.

high-redshift ones, biased negative. In contrast, the zs+ zPAUS and
the zs + zPAUS+NB methods display a flatter bias with redshift.

At higher redshifts (zt > 1), the baseline network photo-zs
show a ∼2% bias. Implementing MTL without increasing the
photo-z training sample (solid red line) moderately improves the
bias, but it is still far from the Euclid requirement. On the other
hand, increasing the training sample with PAUS+COSMOS
photo-zs produces a strong bias reduction (blue and green lines),
decreasing the bias to ∼1% for the highest-redshift galaxies.
Figure 1 suggests that this is likely to be caused by a lack of train-
ing examples with spectroscopy at zt > 1. The training sample at
high-redshift is increased with the PAUS+COSMOS photo-zs.

The right panel of Fig. 4 shows the photo-z bias in equally
populated i-band magnitude bins. Comparing to the right panel
in the same figure, the bias binning in i-band magnitude is lower
than that binning in redshift. For instance, binning in redshift
the largest bias that the zs method obtains is a ∼2.5% for the
highest-redshift galaxy bin. In contrast, binning in magnitude,
galaxies in the faintest bin reach a 0.8% bias with the same
method. This is partly because binning in magnitude, positive
and negative biases in redshift cancel each other out. The photo-
zs of galaxies with i < 22 are unbiased with the four methods.
For galaxies with i > 22, the zs method displays the largest bias,
which is already reduced with the MTL method without data
augmentation (zs+NB). The methods extending the sample using
the PAUS+COSMOS photo-zs (green and blue lines) reduce the
bias of the zs and the zs+NB methods.

In this paper, we consider a galaxy to be an outlier if

|zp − zt| / (1 + zt) > 0.15. (7)

In the spectroscopic sample, the baseline network yields 0.6%
outliers, which reduces to 0.5% with the MTL using PAUS pho-
tometry, the training sample extension with PAUS+COSMOS
photo-z, and the combination of both. The fraction of outliers in
the PAUS sample in COSMOS is 1.1% for the baseline network
and for the training sample extension with PAUS+COSMOS
photo-zs (zs + zPAUS). The methodologies including MTL reduce
the outlier fraction to 0.8% (zs+NB) and 0.6% (zs + zPAUS+NB).
While in the spectroscopic sample extending the training sample
and including MTL have a similar effect on the outlier frac-
tion, in the full PAUS sample in COSMOS MTL has a stronger
impact. The MTL methodologies are particularly reducing the
number of high-redshift photo-z outliers.

In order to validate the predicted photo-z probability dis-
tributions p(z), we use the probability integral transform (PIT;
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Fig. 5. PIT distribution for the COSMOS photo-zs predicted with
the baseline zs method (black), the zs+NB method (red), the zs+zPAUS
method (blue), and the zs+zPAUS+NB method (green). Including the
PAUS+COSMOS photo-zs in the training reduces the number of out-
liers on the edges of the distribution.

Dawid 1984; Gneiting et al. 2005; Bordoloi et al. 2010), which is
defined as

PIT ≡
∫ ztrue

−∞

dz p(z), (8)

where ztrue is the true redshift. When the p(z) faithfully rep-
resents the true redshift, the PIT distribution is the uniform
distribution U[0,1]. Contrary, PIT histograms with peaks at the
edges (i.e. around zero and unity) indicate the presence of out-
lier measurements. Also, PIT histograms more populated at
the centres than on the edges denote over-dispersed probabil-
ity distributions, while valleys at the centre of the histogram
correspond to under-dispersed ones.

We measure the PIT distribution for the complete COSMOS
sample using a combination of spectroscopic redshifts and high-
precision photo-z as true redshift. Figure 5 shows the PIT distri-
butions for the p(z) measured with the baseline zs method (black
line), the MTL method (dashed red line), extending the train-
ing sample with high-precision photo-z (dotted blue line), and
combining the training sample augmentations and MTL (green
line). In all cases, the PIT distribution is approximately a U[0,1]
distribution, indicating that our networks predict robust proba-
bility distributions with reliable uncertainty measurements. The
baseline and the zs+NB methods display peaks on the edges of
the distribution corresponding to outliers in the probability dis-
tributions. These peaks are reduced with the two methods using
PAUS+COSMOS photo-zs in the training sample.

5. Photo-z performance on deeper galaxy
simulations

So far, all the networks have been trained and evaluated on sam-
ples within the same magnitude range iAB < 23 (see Sect. 4).
However, if the MTL network developed in this paper aims
to improve the photo-z estimates of future deeper broadband
surveys such as Euclid or LSST, the photo-z improvement it
provides must hold for fainter galaxies. In the case of Euclid,
observations will reach a limiting magnitude of 24.5 for the VIS
instrument (Cropper et al. 2012; Amiaux et al. 2012) with 10σ
depth for extended sources, which corresponds to a similar depth

in the i-band filter. Rubin will observe to a single exposure depth
of rAB ∼ 24.5 and a co-added survey depth of rAB ∼ 27.5 (Ivezić
et al. 2019), where the depth in the r band and the i band are also
similar.

Currently, there are no PAUS measurements beyond iAB =
23, thus limiting the magnitude range of the MTL training
sample. Although observing deeper with PAUS is technically
feasible, it would require considerably more observing time.
Therefore, the MTL network must provide reliable photo-z pre-
dictions for deep data samples, while it is trained on a shallower
data sample. Nevertheless, we note that this problem is not
exclusive to our MTL network, but it affects all photo-z machine-
learning algorithms. These are usually trained on relatively
shallow spectroscopic samples and used to predict the photo-zs
for much deeper data samples (Masters et al. 2017).

In this section we explore how the MTL network performs
for deep samples (iAB < 25), while the training is limited
to galaxies with iAB < 23 using Flagship simulated galaxy
mocks (see Sect. 2.5). The broad bands used for this test are
the CFHT u band, the griz bands from DECam (Honscheid &
DePoy 2008), and the Euclid Near-infrared spectrometer and
photometer (NISP) near-infrared bands HE, JE and YE (Euclid
Collaboration 2022)8. These are not the same bands that were
used in the tests of the COSMOS field (see Sects. 2.3 and 4), but
these bands were chosen to demonstrate the potential benefits for
the Euclid photo-z estimation.

We trained the four methods presented in Sect. 3.2 on a sam-
ple with 10 000 spectroscopic galaxies, which are augmented
to 30 000 with PAUS-like galaxies without spectroscopic red-
shifts and limited to iAB < 23. These numbers were chosen to
approximately match the number of spectroscopic and PAUS-
like galaxies in the COSMOS field (see Sect. 4). To simulate
the performance of the approaches that extend the training
sample with high-precision photo-zs (methods zs + zPAUS and
zs+NB+zPAUS in Sect. 3.1), we added a scatter to the true red-
shifts of the PAUS-like simulated galaxies, so that the precision
resembles that of the PAUS+COSMOS photo-zs.

The left panels in Fig. 6 show the photo-z bias of 30 000
simulated test galaxies to magnitude iAB < 25 in equally popu-
lated magnitude bins (top) and in equally spaced redshift bins
(bottom). The shaded areas correspond to the Euclid photo-z
requirement of ∆z < 0.002. We obtain a larger bias than the
Euclid requirement with all methods, although those including
MTL reduce the bias of fainter galaxies. Although we are not
meeting the Euclid bias requirement, our aim is to advance the
usage of machine-learning photo-z developing novel method-
ology, rather than providing the final pipeline. We hope the
improvement and ideas seen in this paper can be helpful for
further development of Euclid machine-learning algorithms.

The right panels in Fig. 6 show the photo-z precision for
the same 30 000 simulated test galaxies to magnitude iAB <
25 in magnitude (top) and redshift (bottom) bins. The base-
line network (black thick line) achieves an overall precision of
σ68 = 0.076, which increases to σ68 = 0.085 for galaxies with
iAB > 23. Training using photo-zs but without MTL (zs + zPAUS,
dotted blue line) improves the precision to σ68 = 0.0654 and
σ68 = 0.080 for galaxies with iAB > 23. With zs+NB, the over-
all precision is σ68 = 0.067, which degrades to σ68 = 0.082 for
galaxies with iAB > 23. Finally, combining MTL and the photo-z
data augmentation (zs+NB+zPAUS, solid green line) provides the
best photo-z performance with σ68 = 0.065 for the full sample,

8 With the following 5σ limiting magnitudes: u: 25.25; g: 24.65; r:
24.15; i: 24.35; z: 23.95; YE: 24.0, JE: 24, HE: 24.
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Fig. 6. Top: photo-z bias (left) and precision (right) in equally populated magnitude bins. Bottom: photo-z bias (left) and dispersion (right) in
equally spaced spectroscopic redshift bins. The shaded grey areas indicate ∆z > 0.002, corresponding to the Euclid requirement for the photo-z
bias. All plots are for 30 000 Flagship test galaxies with magnitudes iAB < 24.5 for the methods presented in Sect. 3.2. The training sample contains
around 15 000 spectroscopic galaxies, extended to 30 000 with PAUS-like galaxies without spectroscopy, all of them to iAB < 23.

which increases to σ68 = 0.079 for galaxies with iAB > 23 The
best performance in terms of bias and precision is obtained with
the zs+zPAUS+NB method, which provides 16% more precise
photo-zs than the baseline network for galaxies with iAB < 25,
which increases to 20% for iAB < 24.

6. Photo-z in colour space

While the effect of increasing the training sample in machine-
learning algorithms has been extensively studied, we still need
to understand why MTL with narrow-band photometry improves
the photo-z estimates. In this section we use SOMs to explore
the COSMOS photo-z performance in colour space (Sect. 6.1).
Furthermore, in Sects. 6.2 and 6.3 we identify colour-space
regions with strong emission lines where the broadband photo-zs
precision is lower.

6.1. MTL photo-z in colour space

A SOM (Kohonen 1982)9 is an unsupervised machine-learning
algorithm trained to produce a low-dimensional (typically two-
dimensional) representation of a multi-dimensional space. A
two-dimensional SOM contains (Nx,Ny) cells, each of them with

9 https://github.com/lauracabayol/SOM

an associated vector of attributes, in our case colour vectors. Ini-
tially, each cell is represented with random colours, which during
the training phase are optimised to represent the colour space of
the training sample. The SOM training also groups together cells
representing similar colours, creating a colour-space map. Once
trained, each galaxy is assigned to its closest cell in colour space.
Moreover, since the SOM clusters galaxies with similar galaxy
colours it also clusters galaxies with similar redshifts (Masters
et al. 2015; Buchs et al. 2019). The appendices contain a more
detailed explanation of SOM algorithms. Self-organising maps
have already been used in different astronomical applications,
such as the correction for systematic effects in angular galaxy
clustering measurements (Johnston et al. 2021b) and for estima-
tion and calibration of photometric redshifts (Carrasco Kind &
Brunner 2014; Wright et al. 2020a,b; Hildebrandt et al. 2021).

To show the MTL performance in colour space we trained a
60×70 SOM on the uBVriz photometry from the COSMOS2015
catalogue (see Sect. 2.3), and subsequently assigned a SOM cell
to each galaxy in the catalogue. The choice of SOM dimension
is based on previous works, where 60 × 70 cells was found to
give a good balance between resolution in colour space and the
number of galaxies per cell. Figure 7 shows the predicted photo-
zs in colour space, with each column corresponding to a photo-z
estimation method described in Sect. 3.2. The first row shows
the photo-z distribution, where each cell is coloured with the
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Fig. 7. SOMs showing the photo-z performance in the COSMOS field. The first row exhibits the median predicted photo-z in colour space for the
baseline network (first panel), including MTL training (second panel), with MTL and data augmentation with PAUS+COSMOS photo-zs (third
panel), and the ground-truth redshift (fourth panel). The second row shows the bias in the photo-z predictions for the three training methods of the
first row (first three panels). The third row follows the same scheme as the second but displays the photo-z precision. Finally, the fourth row shows
the photo-z cell dispersion also following the same scheme. White cells correspond to empty cells, that is, cells without any galaxy.

median photo-z of the galaxies it contains. The leftmost panel
(zs, panel A) displays the photo-zs with the baseline network (zs
method), and the second (B) and third (C) panels include MTL
in the training (i.e. zs+NB and NB+zs + zPAUS methods, respec-
tively; bottom panel of Fig. 2). The rightmost panel shows the
ground-truth redshift distribution.

The three methods show a photo-z distribution in colour
space that is similar to that of the ground-truth redshifts.
However, some differences can be seen in the plots in the second
row (panels D, E, and F), which show the differences between

the predicted and true-redshift colour maps (e.g. panel D =
panel A – zt). The network trained with only broad bands (panel
D) exhibits two regions with less accurate photo-zs. These
regions are centred around coordinates (5, 35) and (55, 25),
and the redshift accuracy improves when MTL (panel E) or
zPAUS+MTL (panel F) are included in the training.

These regions are also spotted in the third row of Fig. 7,
which shows the photo-z precision (σ68, Eq. (5)). Comparing
panels G and D, we note that the photo-z precision worsens
in the same regions where photo-zs are less accurate, but this
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Fig. 8. Bias (left) and precision (right) of the PAUS+COSMOS photo-zs
in the COSMOS spectroscopic sample.

moderately improves with MTL (zs+NB, panel H) and including
the PAUS+COSMOS photo-zs (NB+zs + zPAUS, panel F). Finally,
the fourth row shows the dispersion of the redshift distribution
(i.e. the width of the N(z)) within SOM cells. This quantity
is also higher for the clusters pointed out in panels D and G.
However, contrary to the previous panels, the zs+NB training
(panel K), or the zs+NB+zPAUS (panel L) do not narrow the
redshift distributions.

The fact that the photo-z accuracy and precision improve
with MTL, while the width of the redshift distribution does not,
suggests that galaxies from different populations, that is, galax-
ies with different redshifts, are assigned to these cells. Figure 8
supports this hypothesis by showing that the PAUS+COSMOS
photo-zs also exhibit a higher redshift dispersion (right panel)
in the SOM cells within the problematic regions, while the
PAUS+COSMOS photo-z accuracy is smooth across colour
space (left panel). Therefore, there are galaxies with different
redshifts clustered together in broadband colour space.

6.2. Broadband degeneracies in colour space

Self-organising map cells that contain different galaxy pop-
ulations can be the result of colour-redshift degeneracies in
the broadband photometry. Such broadband degeneracies also
cause the worse photo-z performance of the baseline network in
the problematic colour-space regions. The photo-z performance
improves with the MTL training (panel E in Fig. 7).

The inaccurate photo-z cluster in Fig. 7 is adjacent to an
empty colour-space region, which shows up as a blank stripe
separating two neighbouring galaxy populations. To understand
which galaxies populate cells next to empty regions, we trained
a SOM on a simulated galaxy sample (see Sect. 2.5 for details
on the mock) using the uBVriz broadband photometry. The top
panel in Fig. 9 shows the median distance among the SOM vec-
tors characterising each cell and its directly neighbouring cells
(within a 3 × 3 square). Compared with the bottom panel in the
same figure (where we have assigned each galaxy in the mock
to a SOM cell), one can visually see that regions showing larger
distances in the upper plot coincide with empty regions (blank
stripes) in the bottom ones. Therefore, cells neighbouring empty
colour-space regions represent noisier or outlier galaxies, whose
colours differ from the rest of the galaxy sample.

To directly see the effect of noise in the SOM, the bottom
row in Fig. 9 shows the colour-space redshift distribution for the
noisy (left) and noiseless (right) colours of the same galaxies.
Comparing the two panels demonstrates that the blank region
between galaxy populations is broader in the noiseless case.
When noise is included, cells on the edges of the empty regions
in the right panel are populated. This, together with such cells
being located further from the other cells in colour space (top
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Fig. 10. Photo-z scatter for galaxies in three independent SOM cells.
The galaxies in each cell are represented with a different marker (stars,
crosses, and circles).

panel), indicates that cells neighbouring empty spaces describe
a colour-space region that is not representative of the majority
of the galaxy sample (e.g. very noisy galaxies or outliers), which
can potentially cause broadband colour-redshift degeneracies.

6.3. Emission-line confusions

The SOM in Fig. 8 shows a region in colour space that con-
tains different galaxy populations, which indicates the potential
presence of colour-redshift degeneracies. Figure 10 shows the
photo-zs of the galaxies assigned to three different cells within
such a colour-space region. There are four different redshift pop-
ulations assigned to the region: z ∼ 1.4, z ∼ 0.4, and z ∼ 1.2,
which is many times confused with galaxies at z ∼ 0.8. For
the three cells (each of them represented with a different style
marker), we plotted the predicted photo-z (zp) and the true one
(zt) with the baseline network (zs, blue), the network including
MTL (zs+NB, red), and that including MTL and photo-z data
augmentation (zs+NB+zPAUS, orange).

The first cell (marked with stars) contains galaxies with
zt ∼ 0.4 and the three networks predict the correct redshift.
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Fig. 11. Emission-line luminosity in colour space for Hα, Hβ, [O II],
and [O III], as indicated in the title.

The second cell (marked with crosses) contains galaxies with
ztrue ∼ 0.8 and ztrue ∼ 1.2. In general, the MTL network improve
the photo-z prediction of these galaxies. Lastly, the third cell
(marked with dots) contains galaxies with redshifts zt ∼ 1.4. The
baseline network predicts these photo-zs around zp ∼ 0.8, and
again the zs+NB and the MTL+zPAUS training approaches are
able to improve the photo-zs. Photo-z confusions from zt ∼ 0.8
to zt ∼ 1.2 and from zt ∼ 1.45 to zt ∼ 1.25 are recurrent, show-
ing up at several SOM cells within the low photo-z performance
cluster.

Figure 11 explores the mean Hα, Hβ, [O II], and [O III]
emission-line luminosity in colour space. The emission-line
luminosity is estimated as

Lel B 4π Fel D2
L , (9)

where Fel is the emission-line flux and DL is the luminosity
distance, which is estimated assuming Planck 2020 cosmology
(Planck Collaboration VI 2020). Emission-line fluxes are taken
from the photometry catalogue used for the PAUS+COSMOS
photo-z (Alarcon et al. 2021), which were estimated by fitting the
galaxy photometry to a template that modelled the emission-line
fluxes as a 10 Å wide Gaussian distribution.

Figure 11 shows strong emission lines at the low photo-z per-
formance colour-space regions, for example the regions centred
at (5, 30) and (55, 25). These results, together with the redshift
confusions seen in Fig. 10, suggest that emission lines are likely
to cause degeneracies in broadband data.

Since a high ratio of [O III] to Hβ lines may indicate the pres-
ence of active galactic nuclei, we first verified that our galaxies
do not host a Seyfert nucleus. The distribution of our sample on
the ‘blue’ emission-line diagnostic diagram (Lamareille 2010)
classify our sources as star-forming galaxies. Looking at the cor-
relation of star-formation rates and stellar masses, often called
the main sequence (Whitaker et al. 2012), galaxies showing a
photo-z mismatch from zt ∼ 0.8 to zp ∼ 1.2 occupy the starburst
region (i.e. galaxies with enhanced star formation, Rodighiero
et al. 2011). Furthermore, these two emission lines overlap at
wavelengths between the i- and z-broadband filters, which makes
the emission line harder to detect.

Our findings suggest that some photometric features cause
the photo-z mismatches. Emission lines have proven helpful to

break colour-colour degeneracies and to improve the photo-z
estimation (Csörnyei et al. 2021). Despite this, in some regions
of colour parameter space emission-line confusion is a potential
cause for colour-redshift degeneracies.

7. Understanding the MTL underlying mechanism

In this section we aim to understand the underlying mechanism
of MTL that improves the photo-z estimation. In Sect. 7.1, we use
a variation of our fiducial network to encode the galaxy photome-
try in a 2-dimensional space similar to a SOM, while in Sect. 7.2
we study the impact of using other auxiliary tasks (other than
predicting the narrow-band photometry) in the MTL network.

7.1. Underlying data representation in colour space with MTL

For this test, we modify the fiducial network architecture (see
Sect. 3.2 and Fig. 2). In the modified network, we reduce the
input dimension to two features, which are used to predict
the photo-z and reconstruct the narrow-band colours. Encod-
ing the galaxy information in a two-dimensional feature space
simplifies its visualisation and brings it closer to the SOM
colour-space representation, which we have already studied
(Sect. 6).

The galaxy representations in the two-dimensional feature
space must encode all the information needed to make the
photo-z prediction. Furthermore, in the MTL network, those
two numbers are also used to reconstruct the narrow-band pho-
tometry and thus must also encode the relevant information for
this task. Therefore, comparing the feature space representa-
tion of the baseline network (decoding only to the photo-z) and
the MTL network (also predicting the narrow-band photometry)
helps us to better understand why the MTL improves the photo-z
estimates.

As the network’s feature space is not constrained, the net-
work can encode the same galaxy differently in several indepen-
dent trainings. Consequently, the coordinates assigned to each
galaxy do not contain any valuable information by themselves
and distances from different feature-space maps (e.g. the feature
map of the zs network and that of the zs+NB) cannot be directly
compared. However, the overlap of different redshift populations
in feature-space indicate potential degeneracies.

In Fig. 12 we plot the 50% , 68%, and 95% contours of the
feature-space coordinates for the zs (left panel) and the zs+NB
(right panel) methods. These are drawn using a test set of 70 000
Flagship galaxies (Sect. 2.5) to iAB < 25, while the methods train
on galaxies to iAB < 23 (Sect. 5). We draw the contours for a
selection the redshift bins to show the separation of high-redshift
galaxies (red, blue, and green contours), where the MTL method
significantly reduces the photo-z scatter with respect to the zs
method (Fig. 6, top and bottom left panels). We have also plotted
the contours of a distant redshift population (purple contours) to
show that this is further in feature space than the others.

There is a significant overlap amongst high-redshift popu-
lations in the zs case (left panel). Particularly, the core of the
green and blue contours overlap with the red-contour galaxies.
We expect some overlap since the three contours are consec-
utive in redshift; however, the zs+NB method shows a cleaner
separation between the three redshift populations. This indicates
that the zs+NB has a better internal representation of the galax-
ies, where different redshift populations are further in feature
space. The narrow-band reconstruction loss (Eq. (2)) adds the
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SED prediction is addressed as a classification, where the true SED is a
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low-resolution SED information to the training, which can poten-
tially lead to an improved internal representation of galaxies in
the two-dimensional feature space. Furthermore, MTL methods
also include this information for galaxies without spectroscopic
redshift, which effectively acts as a data augmentation tech-
nique. This is particularly important for high-redshift galaxies,
for which we have very few examples in the spectroscopic sample
(Fig. 1).

7.2. MTL with other galaxy parameters

So far in this paper, we explored how photo-z predictions benefit
from MTL predicting PAUS narrow-band fluxes as an auxil-
iary task. However, MTL is a more general technique that could
be exploited beyond narrow-band photometry reconstructions.
While a conventional neural-network training searches for the
function (ϕ) that best predicts the photo-z (z) given the broad-
band photometry ( f ), namely ϕ(z| f ), with MTL the optimisation
is extended to the function that best predicts the photo-z together

with other related parameters (xi),

ϕ(z, x1, ..., xN | θ), (10)

where xi could be any galaxy parameter that correlates with the
galaxy photo-z such as the galaxy type.

Template-fitting photo-z methods predict the joint probabil-
ity distribution p(z, t| f ) of the redshift (z) and the galaxy type (t)
and marginalise over the templates (Benítez 2011). In principle,
this is closely related to what MTL does when it is required to
predict both quantities at the same time. The network looks for
the function that better generalises the prediction of both param-
eters (e.g. type and redshift), but makes independent predictions
in which it ‘marginalises’ over the parameter it is not predicting.

Figure 13 shows the photo-z precision of data in the
COSMOS field when the galaxy type is included as an MTL aux-
iliary task. The SED template is encoded as a discrete number
between 1 and 47 as described in the COSMOS2015 catalogue.
These correspond to 31 unique SEDs and 16 SEDs with differ-
ent extinction laws. Including the SED template (dotted blue
line) reduces the photo-z scatter with respect to the baseline
network (solid black line). However, MTL using PAUS narrow
bands (dashed red line) still provides better photo-z estimates.
This result suggests that while the SED helps produce a better
representation of the data in colour space (see Sect. 7.1), PAUS
narrow-band photometry contains information about the SED, as
well as the emission lines or the extinction.

Figure 13 also shows the photo-z performance when both
the SED and the narrow-band data are used as auxiliary tasks
(green dashed-dotted line). We find that this degrades the photo-z
performance with respect to using the SED or the narrow-
band photometry solely. In theory, using both the narrow-band
photometry and the SED number should benefit the network.
However, the information available in these two tasks is highly
correlated, which can hinder the predictions. Understanding this
better is ongoing research and further study is deferred to future
work.

We also explored MTL predicting galaxy parameters such as
the star-formation rate, the galaxy mass, and the E(B−V) extinc-
tion parameter as auxiliary tasks (not shown). However, none of
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these parameters improved the predicted photo-zs. Furthermore,
including the near-infrared photometry did not improve the
photo-zs either.

7.3. Effect of narrow-band resolution

The improved photo-z from predicting the narrow-band photom-
etry can potentially result from a better internal description of
the galaxy SED type. We test this hypothesis by evaluating the
performance of the networks using MTL for different resolutions
of the output predicted photometry.

Figure 14 shows the photo-z precision of the MTL methods
as a function of the number of predicted narrow bands (i.e. the
output photometry resolution). Assuming the MTL networks use
the narrow-band photometry to improve the internal represen-
tation of galaxies, increasing the output photometry resolution
effectively corresponds to turning on this mechanism. To obtain
lower-resolution photometries, we take the mean of groups of
consecutive narrow bands (e.g. 2, 4, and 10). Then, we train
the zs+NB and zs + zPAUS+NB methods several times to predict
the photo-z and the narrow-band photometry with a different
resolution in every training.

The horizontal flat lines in Fig. 14 indicate the photo-z preci-
sion for the methods without MTL; zs (dashed-dotted blue line)
and zs + zPAUS (solid red line). The dotted blue line and the
dashed red line show the zs+NB and zs + zPAUS+NB performance
for the different output photometry resolutions, respectively. As
the output photometry resolution increases, the photometric red-
shift precision improves. This suggests that the MTL networks
are using the narrow-band photometry prediction to improve the
internal representation of the SED, and consequently the SED
internal fitting, which has a direct impact in the photo-z predic-
tion. The narrow-band photometry contains important additional
information about the SED type and galaxy parameters, which
are useful when predicting the redshift.

The zs+NB MTL recovering two-band photometry leads to
predictions above the zs line, which is the result without MTL. In
this limit adding the photometry loss degrade the photo-z results.
We trained this network several times to ensure the result was
correct, obtaining the same degrading in all cases.

8. Discussion and conclusions

Photometric redshifts are crucial for exploiting ongoing and
future large galaxy broadband imaging surveys. While cover-
ing large sky areas, the broadband spectral resolution limits the
redshift performance through colour-redshift degeneracies. The
PAUS is a narrow-band imaging survey that can provide very
precise photo-z measurements for a combination of wide and
deep fields. In this paper we have introduced a new method
for improving broadband photo-z estimates, using deep-learning
techniques on PAUS narrow-band data.

Multi-task learning is a machine-learning training method-
ology that aims to improve the performance and generalisation
power of a network by training it on several related tasks simul-
taneously. This forces the model to share representations among
related tasks, exploiting their commonalities and enabling the
network to generalise better on the original task. We imple-
mented an MTL network that simultaneously predicts the pho-
tometric redshift and infers the narrow-band photometry from
the broadband photometry (see Sect. 3). The photo-z network is
therefore forced to share parameters that are also used to pre-
dict the narrow-band photometry, which improves the internal
colour-space representation of the data.

In the COSMOS field for galaxies to iAB < 23, our method
reduces the photo-z scatter by approximately 20% (see Sect. 4.2)
and the number of photo-z outliers by from ∼1.1 to ∼0.6%
(see Sect. 4.3). We also tested the potential of the method for
fainter galaxies using Euclid-like galaxy simulations. For this,
we trained the network on a magnitude-limited sample with
iAB < 23 and evaluated it on a sample with iAB < 25. The
MTL predicts up to 16% more precise photo-zs for galaxies with
iAB < 25 than the baseline network (see Sect. 5).

We used SOMs to study the photo-z performance in dif-
ferent colour-space regions, detecting a region that contains
galaxies with degenerate photometry-redshift mappings. This
region has a larger photo-z variation within the SOM cells, sug-
gesting that more than one galaxy population is assigned to
the same colour-space location (see the left panel in Fig. 8).
This correlation results in a photo-z mismatch between two
galaxy populations, which affects broadband photo-z estimates.
Our MTL network improves the photo-zs in the degenerated
colour-space regions using PAUS narrow-band data to learn the
underlying colour-space distribution of galaxies.

This paper explores how to exploit data from narrow-band
photometric surveys such as PAUS to improve broadband photo-
z estimates using machine learning. The key point of using
MTL instead of, for example, just using the narrow-band pho-
tometry to obtain more precise photo-zs is that it only requires
narrow-band photometry for the training galaxies and the photo-
z of any galaxy can be evaluated with only the broadband
data. This enables us to exploit fields where we have narrow-
band data to obtain better photo-zs in other fields where these
are not available. PAUS photometry in the COSMOS field is
publicly available, so current and future weak lensing surveys,
such as Euclid or the LSST, can readily benefit from this
methodology to improve their photo-z estimates. Moreover, MTL
is a general machine-learning mechanism that enables fields
with different types of photometry to be exploited in order to
improve photo-z predictions. While PAUS narrow-band photom-
etry is a clear candidate, other surveys such as J-PAS (Benitez
et al. 2014) or ALHAMBRA (Moles et al. 2008) provide more
fields with interesting data to exploit for the benefit of photo-z
estimations.

A153, page 14 of 23



L. Cabayol et al.: A&A proofs, manuscript no. aa45027-22

Acknowledgements. The PAU Survey is partially supported by MINECO
under grants CSD2007-00060, AYA2015-71825, ESP2017-89838, PGC2018-
094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, MDM-2015-0509,
PID2019-111317GB-C31 and Juan de la Cierva fellowship and LACEGAL and
EWC Marie Sklodowska-Curie grant No 734374 and no.776247 with ERDF
funds from the EU Horizon 2020 Programme, some of which include ERDF
funds from the European Union. IEEC and IFAE are partially funded by the
CERCA and Beatriu de Pinos program of the Generalitat de Catalunya. Funding
for PAUS has also been provided by Durham University (via the ERC StG
DEGAS-259586), ETH Zurich, Leiden University (via ERC StG ADULT-
279396 and Netherlands Organisation for Scientific Research (NWO) Vici grant
639.043.512), Bochum University (via a Heisenberg grant of the Deutsche
Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant
(No. 770935)), University College London, Portsmouth support through the
Royal Society Wolfson fellowship and from the European Union’s Horizon 2020
research and innovation programme under the grant agreement No 776247 EWC.
The results published were also funded by the Polish National Agency for Aca-
demic Exchange (Bekker grant BPN/BEK/2021/1/00298/DEC/1), the European
Union’s Horizon 2020 research and innovation programme under the Maria
Skłodowska-Curie (grant agreement No 754510) and by the Spanish Ministry of
Science and Innovation through Juan de la Cierva-formacion program (reference
FJC2018-038792-I). The PAU data centre is hosted by the Port d’Informació
Científica (PIC), maintained through a collaboration of CIEMAT and IFAE,
with additional support from Universitat Autònoma de Barcelona and ERDF.
We acknowledge the PIC services department team for their support and fruitful
discussions. CosmoHub has been developed by the Port d’Informació Científica
(PIC), maintained through a collaboration of the Institut de Física d’Altes Ener-
gies (IFAE) and the Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas (CIEMAT) and the Institute of Space Sciences (CSIC&IEEC), and
was partially funded by the “Plan Estatal de Investigación Científica y Técnica y
de Innovación” program of the Spanish government. We gratefully acknowledge
the support of NVIDIA Corporation with the donation of the Titan V GPU
used for this research. The Euclid Consortium acknowledges the European
Space Agency and a number of agencies and institutes that have supported
the development of Euclid, in particular the Academy of Finland, the Agenzia
Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium,
the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für
Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para
a Ciência e a Tecnologia, the Ministerio de Economia y Competitividad, the
National Aeronautics and Space Administration, the National Astronomical
Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the
Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for
Education, Research and Innovation (SERI) at the Swiss Space Office (SSO),
and the United Kingdom Space Agency. A complete and detailed list is available
on the Euclid web site (http://www.euclid-ec.org). Data availability: The
PAUS raw data are publicly available through the ING group. A few reduced
images are publicly available at https://www.pausurvey.org. The Flagship
catalogue is a property of the Euclid Consortium.

References
Alarcon, A., Gaztanaga, E., Eriksen, M., et al. 2021, MNRAS, 501, 6103
Amiaux, J., Scaramella, R., Mellier, Y., et al. 2012, SPIE Conf. Ser., 8442,

84420Z
Arnouts, S., & Ilbert, O. 2011, Astrophysics Source Code Library [record
ascl:1108.009]

Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109
Benítez, N. 2011, Astrophysics Source Code Library [record ascl:1108.011]
Benitez, N., Dupke, R., Moles, M., et al. 2014, ArXive eprints

[arXiv:1403.5237]
Blake, C., & Bridle, S. 2005, MNRAS, 363, 1329
Bonnett, C. 2015, MNRAS, 449, 1043
Bordoloi, R., Lilly, S. J., & Amara, A. 2010, MNRAS, 406, 881
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Buchs, R., Davis, C., Gruen, D., et al. 2019, MNRAS, 489, 820
Cabayol, L., Eriksen, M., Amara, A., et al. 2021, MNRAS, 506, 4048
Cabayol-Garcia, L., Eriksen, M., Alarcón, A., et al. 2020, MNRAS, 491, 5392
Calabrò, A., Daddi, E., Cassata, P., et al. 2018, ApJ, 862, L22
Carrasco Kind, M., & Brunner, R. J. 2013, MNRAS, 432, 1483
Carrasco Kind, M., & Brunner, R. J. 2014, MNRAS, 438, 3409
Carretero, J., Castander, F. J., Gaztañaga, E., Crocce, M., & Fosalba, P. 2014,

MNRAS, 447, 646
Carretero, J., Tallada, P., Casals, J., et al. 2017, in Proceedings of the European

Physical Society Conference on High Energy Physics. 5-12 July, 488
Caruana, R. 1997, Mach. Learn., 28, 41
Casas, R., Cardiel-Sas, L., Castander, F. J., et al. 2016, SPIE Conf. Ser., 9908,

99084K

Castander, F. J., Ballester, O., Bauer, A., et al. 2012, SPIE Conf. Ser., 8446,
84466D

Chong, De Wei, K., & Yang, A. 2019, Euro. Phys. J. Web Conf., 206, 09006
Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039
Collister, A. A., & Lahav, O. 2004, PASP, 116, 345
Coupon, J., Ilbert, O., Kilbinger, M., et al. 2009, A&A, 500, 981
Cropper, M., Cole, R., James, A., et al. 2012, SPIE, 8442, 84420V
Csörnyei, G., Dobos, L., & Csabai, I. 2021, MNRAS, 502, 5762
Cunha, P. A. C., & Humphrey, A. 2022, A&A 666, A87
Dawid, A. P. 1984, J. R. Statis. Soc. Ser. A, 147, 278
de Jong, J. T. A., Verdoes Kleijn, G. A., Kuijken, K. H., & Valentijn, E. A. 2013,

Exp. Astron., 35, 25
Desprez, G., Paltani, S., Coupon, J., et al. 2020, A&A, 644, A31
D’Isanto, A., & Polsterer, K. L. 2018, A&A, 609, A111
Eriksen, M., Alarcon, A., Gaztanaga, E., et al. 2019, MNRAS, 484, 4200
Eriksen, M., Alarcon, A., Cabayol, L., et al. 2020, MNRAS, 497, 4565
Euclid Collaboration (Schirmer, M., et al.) 2022, A&A 662, A92
Feldmann, R., Carollo, C. M., Porciani, C., et al. 2006, MNRAS, 372, 565
Gatti, M., Vielzeuf, P., Davis, C., et al. 2018, MNRAS, 477, 1664
Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. 2005, Monthly

Weather Rev., 133, 1098
Gomes, Z., Jarvis, M. J., Almosallam, I. A., & Roberts, S. J. 2018, MNRAS, 475,

331
Hasinger, G., Capak, P., Salvato, M., et al. 2018, ApJ, 858, 77
Hildebrandt, H., Pielorz, J., Erben, T., et al. 2009, A&A, 498, 725
Hildebrandt, H., Erben, T., Kuijken, K., et al. 2012, MNRAS, 421, 2355
Hildebrandt, H., van den Busch, J. L., Wright, A. H., et al. 2021, A&A, 647, A124
Honscheid, K., & DePoy, D. L. 2008, International conference on high energy

physics (ICHEP08)
Hoyle, B., Gruen, D., Bernstein, G. M., et al. 2018, MNRAS, 478, 592
Ilbert, O., McCracken, H. J., Le Fèvre, O., et al. 2013, A&A, 556, A55
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Appendix A: Self-organising maps

A SOM (Kohonen 1982) is an unsupervised machine-learning
algorithm trained to produce a low-dimensional (typically two-
dimensional) representation of a multi-dimensional space. A
two-dimensional SOM contains Nx × Ny cells with an associated
vector of attributes (wk), where Nx(Ny) is the dimension of the
SOM on the x(y)-axis, and k corresponds to the kth SOM cell.
Each of these vectors has the same length as the input data.

The SOM training phase is an iterative process during which
the SOM cells compete amongst themselves to represent the
training data. Initially, the cell vectors (wk) are randomly sam-
pled from a uniform distribution, and these are updated after
each iteration step (t). In every training iteration, each galaxy
vector of measured attributes x (e.g. in our case the galaxy
colours), is compared to all the SOM cells’ vectors via a χ2

expression,

χ2
(
wk(t), x

)
=
∑

i

 xi − w
k
i (t)

σi

2 , (A.1)

where i sums over galaxy attributes and σi is the uncertainty
associated with xi. The evaluated galaxy is assigned to the
cell with the lowest χ2, which updates its associated vector of
attributes wk(t) according to the matched galaxy features

Furthermore, in the SOM training procedure, the vector of
features from cells neighbouring the best matching cell are also
updated, clustering together galaxies with similar attributes. This
is implemented with a neighbouring function H(t, d), which
depends on the distance (d) between the best matching cell and
the updated one. The neighbouring function is commonly imple-
mented as a Gaussian kernel with an iteration-dependent vari-
ance σ2

kernel(t). Therefore, the vector of attributes for a particular
cell k after iteration t + 1 is

wk(t + 1) = wk(t) + α(t) H (t, |w − x|)
(
x − wk(t)

)
, (A.2)

where α(t) is the learning rate.
After a few iterations over the training sample, the result is a

map of (Nx × Ny) vectors in a two-dimensional space grouping
together cells with similar features while preserving the topology
of the multi-dimensional space.

Appendix B: Redshift distributions, N(z), and
scatter plots

Unbiased redshift distributions, N(z), are crucial for a variety of
science applications, with the most stringent requirements being
in weak lensing (e.g. Hildebrandt et al. 2012; Hoyle et al. 2018).
broadband photo-zs commonly suffer from biases due to degen-
eracies between colours and redshift, (e.g. Newman et al. 2015;
Masters et al. 2017).

Figure B.1 shows N(z) in tomographic redshift bins for 0 <
zt < 1.5 spaced by 0.2. The last tomographic bin is defined
from 1.2 < zt < 1.5 so that the number of galaxies in the bin
is increased. The ground-truth redshift defining the tomographic
bins (zt) is a combination of the spectroscopic redshift (when it is
available) and the PAUS+COSMOS photo-z elsewhere. The ver-
tical solid grey line indicates the ground-truth median redshift
of the tomographic bin, while the dashed coloured lines repre-
sent the median redshifts of the predicted photo-zs assigned to
the bins.

Multi-task learning with photo-z data augmentation (zs +
zPAUS+NB) always provides equal or more accurate N(z) than

the baseline network (zs, black line). As expected from Fig. 4,
the N(z) values exhibiting the largest bias are those with
zt > 1.2, particularly the bin at zt > 1.2. In this bin, MTL
together with the photo-z data augmentation (zs+NB+zPAUS,
green line), significantly shifts the median of the N(z) towards
the PAUS+COSMOS result.

Commonly, redshift distributions require a bias correction to
reach the accuracy requirements of cosmological measurements.
Techniques such as clustering redshifts are applied to correct
such biases (Ménard et al. 2013; Schmidt et al. 2013; Gatti et al.
2018; van den Busch et al. 2020; Hildebrandt et al. 2021). MTL
reduces the bias of the N(z) already at the photo-z prediction
stage. Even if the MTL photo-zs still require some correction,
the final redshift distributions would benefit from initially having
less biased redshift distributions (if these redshift distributions
are used to fit the clustering-z data points).

Figure B.2 shows the density scatter between the predicted
photo-zs and the true redshift. Here, we are plotting the com-
plete COSMOS sample, and we therefore use a combination
of spectroscopic redshift and PAUS+COSMOS photo-zs as
true redshift. The top left panel corresponds to baseline net-
work (zs method) and clearly shows higher photo-z scatter and
more outliers in the high-redshift region with respect to the
other methods. The MTL method (top right, zs+NB) already
reduces photo-z scatter and number of high-redshift outliers.
The methods including additional PAUS+COSMOS photo-zs in
the training sample (bottom panels) further improve the photo-z
performance.
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Fig. B.1. N(z) estimates of the full COSMOS sample divided into seven tomographic bins over the redshift range 0 < z < 1.5. Tomographic bins
are defined using the spectroscopic redshifts and the PAUS+COSMOS high-precision photo-zs for galaxies without spectroscopy. The vertical solid
black lines indicate the median ground-truth redshift, while the other vertical lines indicate the median redshifts of the N(z) estimates. Unseen lines
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Fig. B.2. Scatter plot of the 1:1 relation between the predicted photo-z and the true redshift, which is a combination of spectroscopic redshift and
PAUS+COSMOS photo-zs, in the complete COSMOS sample for the four methods in Sect. 3.

Appendix C: Effect of training with photo-zs as
ground-truth targets

In this work we have implemented and tested two training
methodologies that rely on narrow-band photo-z estimates as
ground-truth targets (see methods zs + zPAUS and NB+zs + zPAUS
in Sect. 3.2). Even if such photo-zs are overall very accurate, its
implementation in the training could harm the photo-z perfor-
mance since these are less precise than spectroscopic redshifts
and could potentially include outliers. In this section we explore
the effect that less precise redshift labels (Sect. C.1) and the
presence of outliers (Sect. C.2) have on the photo-z performance.

Appendix C.1: Effect of the dispersion in the ground-truth
photo-z

Figure C.1 shows the photo-z precision of a set of 1000 spectro-
scopic galaxies for four independent broadband networks (sim-
ply mapping colours to redshift), each of them trained with dif-
ferent ground-truth redshifts. The redshifts used for training are
the spectroscopic redshifts (see Sect. 2.4), the PAUS+COSMOS
photo-zs (see Sect. 2.2), the COSMOS30 photo-zs (Laigle et al.
2016), which combine 30 photometric filters and estimates the
photo-z with LePhare (Arnouts & Ilbert 2011), and a set of
CFHT photo-zs from Hildebrandt et al. (2012) combining six
broad bands (ugriz) with photo-z estimated with BPZ (Benítez

2011). The input data are, in all cases, the CFHT u band and the
BVriz Subaru broadband filters from COSMOS2015.

The red points in Fig. C.1 show the redshift dispersion
using a training sample of galaxies with spectroscopic red-
shift. We always keep the same training sample (which contains
around 6000 galaxies) and change the labelled true redshifts
in each independent training (spectroscopic catalogue, PAUS
data, COSMOS30, and the CFHT catalogue). Using spectro-
scopic redshifts as ground-truth redshifts results in a dispersion
of σ68 = 0.016. Replacing the spectroscopic redshift with the
photo-z from PAUS+COSMOS, COSMOS30, or CFHT yields
σ68 = 0.017, σ68 = 0.018, and σ68 = 0.046, respectively. As the
ground-truth redshifts become less precise, the machine-learning
photo-z performance degrades.

To obtain the green points (Fig. C.1), we extended the train-
ing sample to all galaxies in the COSMOS sample with a photo-z
estimate, which results in approximately 15 000 galaxies when
the four catalogues are merged. Then, three independent net-
works are trained using the PAUS+COSMOS, the COSMOS-30,
and the CFHT photo-zs as true redshifts (the spectroscopic
redshift is not used even if it is available). This provides a pre-
cision of σ68 = 0.016, σ68 = 0.017, and σ68 = 0.045 for the
PAUS+COSMOS, the COSMOS30, and the CFHT photo-zs,
respectively. The three networks improve the photo-z precision
with respect to training with spectroscopic redshifts only. Indeed,
with the PAUS+COSMOS photo-z labels we already reach the
photo-z precision with spectroscopic labels.
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Fig. C.1. Photo-z performance as a function of the ground-truth redshift
precision used for training the networks. The training redshifts are the
spectroscopic redshifts, the PAUS+COSMOS photo-zs, COSMOS30,
and a set of CFHT photo-zs in COSMOS. Red points correspond to
training on the spectroscopic sample (around 6000 galaxies). The green
and red points show the training sample extended to COSMOS galax-
ies with photo-zs (around 15 000 galaxies). The blue lines show the
expected photo-z performance as a function of target redshift precision.
The true redshifts, the spectroscopic redshift in the COSMOS2015 cat-
alogue (solid blue line), and the simulated redshift in the PAUS mock
(blue dashed line) are scattered with precision in 0.001 bins. The top
inset zooms into the framed area in the main plot (lower-left corner)

Finally, the blue points in the figure correspond to the net-
works trained with the same 15 000 photo-z galaxies as in the
green points, but combining spectroscopic redshifts (if avail-
able) and photo-zs as ground-truth training redshifts. Combining
spectroscopic redshifts with PAUS+COSMOS photo-zs yields
σ68 = 0.015, which improves upon the precision obtained with
spectroscopic redshifts only.

The light blue lines in Fig. C.1 show the expected perfor-
mance as a function of the ground-truth redshift precision. The
solid line uses the COSMOS2015 uBVriz broad bands and the
dashed one uses simulated data from the PAUS mock described
in Sect. 5. In both cases, true redshifts (spectroscopic or sim-
ulated) are scattered with the corresponding dispersion in the
abscissa.

Both networks (solid and dashed lines) are trained with
15 000 galaxies to have a direct comparison with the previous
results. We always use the scattered redshifts as ground-truth
targets, in such a way that the lines should be compared with
the green points since these are trained using only photometric
redshifts. The results obtained with the PAUS+COSMOS and
COSMOS30 match the expectation curves, but there is a sig-
nificant mismatch with the CFHT photo-zs. This is potentially
triggered by systematic errors or outliers in the CFHT photo-z
not represented in the blue curves.

Appendix C.2: Effect of photo-z outliers in the training
redshifts

In Fig. C.1 showed a mismatch between the expected (solid
blue curve) and photo-z performance training a network with
the CFHT photo-zs as ground-truth redshifts (rightmost red
point). However, the expectation assumes that the CFHT photo-
zs are not affected by other effects such as systematic errors or
catastrophic outliers.

Figure C.2 shows the effect of outliers in the ground-truth
targets of the training sample. The network is trained 20 inde-
pendent times with 5000 COSMOS2015 spectroscopic galaxies

including a fraction (monotonically increasing in each iteration)
of labelled photo-z outliers. This procedure is repeated for the
spectroscopic redshifts (black line), the PAUS+COSMOS photo-
zs (red line), the COSMOS30 photo-zs (blue line), and the CFHT
photo-zs (green line).

In the left panel, the artificial outlier redshifts are swapped
with a random value sampled from a uniform distribution
U(0, 1.5) to simulate catastrophic outliers. The predicted photo-
z precision degrades as the fraction of target redshift outliers
increases. This also affects the predicted p(z), which become
noisier and broader (not shown). However, and unexpectedly,
the network can provide reasonable photo-z estimates with up to
80% of catastrophic outliers in the training sample. Furthermore,
the network is able to make reliable photo-z predictions of galax-
ies that have been used in the training sample with wrong target
redshift values. This result holds when either spectroscopic
redshifts or any of the photo-zs are used for training.

The middle panel shows the effect of a systematic multi-
plicative shift in the training sample redshifts, where the selected
targets are shifted to 20% higher redshifts. In this scenario, the
predicted photo-z precision degrades faster than when outliers
are random (left panel) but the network does never completely
break. For an outlier fraction higher than 60%, the precision set-
tles at σ68 = 0.03, but the bias rapidly increases. Finally, the
rightmost panel presents the effect of a systematic shifting the
redshift (zmod) so that O III is confused with Hα in the training
redshifts:
zmod = λO III/λHα (1 + zt) − 1 , (C.1)

where zt is the galaxy redshift.
The training degrades and breaks much faster than in the two

previous cases, where with around 40% of wrong target redshifts
the network is not able to provide reliable predictions. As the
fraction of affected target redshifts increases, the predicted p(z)
become more doubly peaked. Moreover, a plot of photo-z ver-
sus spec-z scatter displays two clear lines, one with the correct
mapping and another shifted upwards (not shown), which is trig-
gered by the training objects with the photo-z artificially shifted
to confuse the emission lines. Again, the effect of outliers is sim-
ilar regardless of the redshifts used for training (spectroscopic or
different-precision photo-z).

Contrary to expectations, the left panel of Fig. C.2 indicates
that the network can learn the mapping between the galaxy pho-
tometry and redshifts with up to 80% of catastrophic outliers in
the training sample. Given that the training sample is composed
of 5000 galaxies, this means that the network can effectively
learn the colour-redshift relations from 1000 galaxies, learning
to ignore the remaining 4000 spurious galaxies.

Figure C.3 shows the cost function evolution of a network
trained with wrong target redshifts for half of the training while
keeping the rest to the correct redshift values. The cost func-
tion is split in two; one for those objects with correct redshift
(red) and another for those with wrong redshifts (blue). In the
left panel, the modified target redshifts are switched to a ran-
dom value from a uniform distribution U(0, 1.5), as in the left
panel of Fig. C.2. The cost function of galaxies with the cor-
rect target redshift decreases, which indicates that the network is
learning from them. In contrast, the cost function of incorrectly
labelled galaxies remains constant along the training, showing
that the network is not learning anything from them. Therefore,
the network is effectively only learning from galaxies with cor-
rect target redshifts. Randomly swapping redshifts to different
values breaks any correlation between the photometry and the
redshifts. Hence, the network is only learning the colour-redshift
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Fig. C.3. Training loss function for galaxies with a wrong (blue) and a corrected (red) target redshift. The training sample consists of 5000
spectroscopic galaxies with photometry from COSMOS2015. In the left panel, the modified target redshifts are randomly switched to a value
drawn from U(0, 1.5), while in the right panel the wrong redshift labels are generated with Eq. (C.1).

mapping from galaxies with the correct target redshift. Never-
theless, having a large fraction of wrong labels adds noise to the
training, broadening the predicted p(z).

The right panel of Fig. C.3 shows the loss function for the
correct and the wrongly labelled training galaxies separately
when the incorrect redshift labels are generated with Eq. (C.1).
This introduces a new colour-redshift relation that forces the
network to learn both from galaxies with wrong and correct
target redshifts. This can also be noted in the p(z) behaviour,
which presents a double-peaked distribution (not shown). Hence,
Figs. C.2 and C.3 indicate that having catastrophic outliers in
the training sample labels effectively adds noise to the photo-z
predictions. In contrast, a systematic bias in the training sample
targets produces a bias in such predictions.

Appendix D: Robustness of the methods to
outliers in the target redshifts

In this appendix we study the robustness of our training method-
ologies to outliers in the redshifts used as ground-truth to train
the network. In Sect. 5, in order to simulate the PAUS+COSMOS
photo-zs used to train the zs+zPAUS and the zs+zPAUS+NB meth-

ods, we scatter the true redshift from the simulations to a sim-
ilar precision of PAUS+COSMOS photometric redshifts. This
process assumes that photometric redshift errors are purely
Gaussian; however, real data also have non-Gaussian errors and
photo-z outliers, which can be caused by, for example, noisy
photometry, emission-line confusions, and other artefacts in the
data.

Systematic outliers in the ground-truth target redshifts have
a much stronger impact than random catastrophic outliers
(Figs. C.3 and C.2 ). Therefore, we assume the most adverse sce-
nario where all outliers are systematically shifted according to
Eq.(C.1).

Figure D.1 shows the impact that outliers in the target red-
shifts have in the performance of the methods. We studied four
different cases: a sample without outliers in the training sample
(black solid line), with a 5% of outliers in the spectroscopic red-
shifts and 1% of outliers in the photo-zs (red dashed line), 5%
of spectroscopic redshift outliers and 5% photo-zs outliers (blue
dashed line), and 5% of spectroscopic redshift outliers and 10%
photo-zs outliers (green dashed line).

Adding the 5% of spectroscopic redshift outliers already has
an impact on the predicted photo-z bias of the baseline method
(zs, top left panel). The effect of spectroscopic redshift outliers

A153, page 22 of 23



L. Cabayol et al.: A&A proofs, manuscript no. aa45027-22

2

0

2

M
ed

ia
n[

z]

×10 2

zs
No outliers
5% zs outliers, 1% zp  outliers
5% zs outliers, 5% zp  outliers
5% zs outliers, 10% zp  outliers

zs+NB

22.0 22.5 23.0 23.5 24.0 24.5
CFHT-i

2

0

2

M
ed

ia
n[

z]

×10 2

zs+zp

22.0 22.5 23.0 23.5 24.0 24.5
CFHT-i

zs+zp+NB

Fig. D.1. Effect on the photo-z predictions of different outlier rates in the target spectroscopic and high-precision photometric redshifts used as
ground-truth targets to train the methods in Sect. 3. In all cases, outliers have been included following Eq.(C.1).

in the training sample is mitigated by the MTL network (top
right panel), which is not affected by training-photo-z outliers
since these are not used during the training (method zs + NB,
Sect. 3.2). We also observe that training with photo-z samples
with up to ∼5% of outliers also mitigates the effect of outliers
in the spectroscopic sample. This is expected since adding more
training data reduces the relative importance of an outlier in the
training sample. However, the bottom plots also show that train-
ing samples with more than 10% of systematic photo-z outliers
degrade the photo-z performance.

We also studied the robustness of the dispersion and the out-
lier rate to the target-redshift outliers and these two metrics are
much less affected by the presence of target-redshift outliers.

Appendix E: Further studies of multi-task training

In this section we aim to give a more technical view of the
network functioning. In Fig. E.1 we show the evolution of the
photo-z prediction loss function (Eq. 1) with time for the base-
line method (zs, black line) and the MTL method (zs+NB, red
line). In both cases, the solid line corresponds to the training loss,
while the dashed line is the validation loss. The networks have
been trained for 100 epochs with an initial learning rate of 10−3,
which decreases to 10−4 after 50 epochs. In this test, unlike pre-
vious tests, we initialise the two networks with the same weights.
Still we observe training with the two different losses leads to a
lower photo-z loss (Lz). We also find adding the narrow-band
loss stabilises the photo-z loss in the validation sample, meaning
the network better generalise with the additional narrow-band
loss.

0 20 40 60 80 100
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Fig. E.1. Training (solid lines) and validation (dashed lines) loss for
the zs (black) and zs+NB (red) methods. All methods are trained for
100 epochs with an initial learning rate of 10−3 and the same initial
conditions.
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