Skip to main content

Research Repository

Advanced Search

Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification

Aznan, N.K.N.; Atapour-Abarghouei, A.; Bonner, S.; Connolly, J.D.; Al Moubayed, N.; Breckon, T.P.

Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification Thumbnail


Authors

N.K.N. Aznan

S. Bonner

J.D. Connolly

N. Al Moubayed



Abstract

Despite significant recent progress in the area of Brain-Computer Interface (BCI), there are numerous shortcomings associated with collecting Electroencephalography (EEG) signals in real-world environments. These include, but are not limited to, subject and session data variance, long and arduous calibration processes and predictive generalisation issues across different subjects or sessions. This implies that many downstream applications, including Steady State Visual Evoked Potential (SSVEP) based classification systems, can suffer from a shortage of reliable data. Generating meaningful and realistic synthetic data can therefore be of significant value in circumventing this problem. We explore the use of modern neural-based generative models trained on a limited quantity of EEG data collected from different subjects to generate supplementary synthetic EEG signal vectors, subsequently utilised to train an SSVEP classifier. Extensive experimental analysis demonstrates the efficacy of our generated data, leading to improvements across a variety of evaluations, with the crucial task of cross-subject generalisation improving by over 35% with the use of such synthetic data.

Citation

Aznan, N., Atapour-Abarghouei, A., Bonner, S., Connolly, J., Al Moubayed, N., & Breckon, T. (2019, December). Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification. Presented at International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary

Presentation Conference Type Conference Paper (published)
Conference Name International Joint Conference on Neural Networks (IJCNN)
Acceptance Date Mar 7, 2019
Publication Date Jul 14, 2019
Deposit Date Mar 25, 2019
Publicly Available Date Nov 13, 2019
Pages 1-8
Series ISSN 2161-4407
Book Title 2019 International Joint Conference on Neural Networks (IJCNN) ; proceedings
DOI https://doi.org/10.1109/ijcnn.2019.8852227
Public URL https://durham-repository.worktribe.com/output/1144574
Related Public URLs arXiv:1901.07429

Files

Accepted Conference Proceeding (1.6 Mb)
PDF

Copyright Statement
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.






You might also like



Downloadable Citations