Y.F.A. Gaus
Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery
Gaus, Y.F.A.; Bhowmik, N.; Isaac-Medina, B.K.S.; Breckon, T.P.
Authors
Dr Neelanjan Bhowmik neelanjan.bhowmik@durham.ac.uk
Post Doctoral Research Associate
Brian Isaac Medina brian.k.isaac-medina@durham.ac.uk
Postdoctoral Research Associate
Professor Toby Breckon toby.breckon@durham.ac.uk
Professor
Contributors
H. Bouma
Editor
R. Prabhu
Editor
R. J. Stokes
Editor
Y. Yitzhaky
Editor
Abstract
Object detection from infrared-band (thermal) imagery has been a challenging problem for many years. With the advent of deep Convolutional Neural Networks (CNN), the automated detection and classification of objects of interest within the scene has become popularised due to the notable increases in performance over earlier approaches in the field. These advances in CNN approaches are underpinned by the availability of large-scale, annotated image datasets that are typically available for visible-band (RGB) imagery. By contrast, there is a lack of prior work that specifically targets object detection in infrared-band images, owing to limited datasets availability that stems from more the limited availability and access to infrared-band imagery and associated hardware in general. A viable solution to this problem is transfer learning which can enable the use of such CNN techniques within infrared-band (thermal) imagery, by leveraging prior training on visible-band (RGB) image datasets, and then subsequently only requiring a secondary, smaller volume of infrared-band (thermal) imagery for CNN model fine-tuning. This is performed by adopting an existing pre-trained CNN, pre-optimized for generalized object recognition in visible-band (RGB) imagery, and subsequently fine-tuning the resultant model weights towards our specific infrared-band (thermal) imagery domain task. We use of two state-of-art object detectors, Single Shot Detector (SSD) with a VGG-16 CNN backbone pre-trained on the ImageNet dataset, and You-Only-Look-Once (YOLOV3) with a DarkNet-53 CNN backbone pretrained on the MS-COCO dataset to illustrate our visible-band to infrared band transfer learning paradigm. Exemplar results reported over the FLIR Thermal and MultispectralFIR benchmark datasets show that significant improvements in mAP detection performance to f0.804MsFIR, 0.710FLIRg for SSD and f0.520MsFIR, 0.308FLIRg for YOLOV3 via the use of transfer learning from initial visible-band based CNN training.
Citation
Gaus, Y., Bhowmik, N., Isaac-Medina, B., & Breckon, T. (2020, September). Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery. Presented at Spie Security + Defence
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | Spie Security + Defence |
Online Publication Date | Sep 20, 2020 |
Publication Date | 2020-09 |
Deposit Date | Sep 22, 2020 |
Publicly Available Date | Sep 25, 2020 |
Publisher | SPIE |
Volume | 11542 |
Series Title | SPIE Security + Defence |
Book Title | Proceedings volume 11542, counterterrorism, crime fighting, forensics, and surveillance technologies IV. |
DOI | https://doi.org/10.1117/12.2573968 |
Public URL | https://durham-repository.worktribe.com/output/1141766 |
Files
Published Conference Proceeding
(3 Mb)
PDF
Copyright Statement
Copyright 2020 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.
Gaus Y.F.A., Bhowmik, N., Isaac-Medina, B.K.S. & Breckon, T.P. (2020), Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery, 11542: Spie Security + Defence. SPIE,11540205 (September 20th 2020) https://doi.org/10.1117/12.2573968
You might also like
Seeing Through the Data: A Statistical Evaluation of Prohibited Item Detection Benchmark Datasets for X-ray Security Screening
(2023)
Presentation / Conference Contribution
Region-based Appearance and Flow Characteristics for Anomaly Detection in Infrared Surveillance Imagery
(2023)
Presentation / Conference Contribution
Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption
(2023)
Presentation / Conference Contribution
Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery
(2022)
Presentation / Conference Contribution
Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery
(2022)
Presentation / Conference Contribution