Mr William Thomas Prew william.t.prew@durham.ac.uk
PGR Student Doctor of Philosophy
Improving Robotic Grasping on Monocular Images Via Multi-Task Learning and Positional Loss
Prew, W.; Breckon, T.P.; Bordewich, M.J.R.; Beierholm, U.
Authors
Professor Toby Breckon toby.breckon@durham.ac.uk
Professor
Professor Magnus Bordewich m.j.r.bordewich@durham.ac.uk
Professor
Dr Ulrik Beierholm ulrik.beierholm@durham.ac.uk
Associate Professor
Abstract
In this paper we introduce two methods of improving real-time object grasping performance from monocular colour images in an end-to-end CNN architecture. The first is the addition of an auxiliary task during model training (multi-task learning). Our multi-task CNN model improves grasping performance from a baseline average of 72.04% to 78.14% on the large Jacquard grasping dataset when performing a supplementary depth reconstruction task. The second is introducing a positional loss function that emphasises loss per pixel for secondary parameters (gripper angle and width) only on points of an object where a successful grasp can take place. This increases performance from a baseline average of 72.04% to 78.92% as well as reducing the number of training epochs required. These methods can be also performed in tandem resulting in a further performance increase to 79.12%, while maintaining sufficient inference speed to afford real-time grasp processing.
Citation
Prew, W., Breckon, T., Bordewich, M., & Beierholm, U. (2021). Improving Robotic Grasping on Monocular Images Via Multi-Task Learning and Positional Loss. . https://doi.org/10.1109/icpr48806.2021.9413197
Conference Name | 25th International Conference on Pattern Recognition (ICPR 2020) |
---|---|
Conference Location | Milan, Italy |
Start Date | Jan 10, 2021 |
End Date | Jan 15, 2021 |
Acceptance Date | Oct 11, 2020 |
Online Publication Date | May 5, 2021 |
Publication Date | 2021 |
Deposit Date | Oct 25, 2020 |
Publicly Available Date | Oct 27, 2020 |
Series ISSN | 1051-4651 |
DOI | https://doi.org/10.1109/icpr48806.2021.9413197 |
Files
Accepted Conference Proceeding
(3.1 Mb)
PDF
Copyright Statement
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption
(2023)
Conference Proceeding
ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction
(2023)
Conference Proceeding
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
(2023)
Conference Proceeding
Region-based Appearance and Flow Characteristics for Anomaly Detection in Infrared Surveillance Imagery
(2023)
Conference Proceeding