H. Sasaki
Data Augmentation via Mixed Class Interpolation using Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery
Sasaki, H.; Willcocks, C.G.; Breckon, T.P.
Authors
Dr Chris Willcocks christopher.g.willcocks@durham.ac.uk
Associate Professor
Professor Toby Breckon toby.breckon@durham.ac.uk
Professor
Abstract
Machine learning driven object detection and classification within non-visible imagery has an important role in many fields such as night vision, all-weather surveillance and aviation security. However, such applications often suffer due to the limited quantity and variety of non-visible spectral domain imagery, in contrast to the high data availability of visible-band imagery that readily enables contemporary deep learning driven detection and classification approaches. To address this problem, this paper proposes and evaluates a novel data augmentation approach that leverages the more readily available visible-band imagery via a generative domain transfer model. The model can synthesise large volumes of non-visible domain imagery by image-to-image (I2I) translation from the visible image domain. Furthermore, we show that the generation of interpolated mixed class (non-visible domain) image examples via our novel Conditional CycleGAN Mixup Augmentation (C2GMA) methodology can lead to a significant improvement in the quality of non-visible domain classification tasks that otherwise suffer due to limited data availability. Focusing on classification within the Synthetic Aperture Radar (SAR) domain, our approach is evaluated on a variation of the Statoil/C-CORE Iceberg Classifier Challenge dataset and achieves 75.4 % accuracy, demonstrating a significant improvement when compared against traditional data augmentation strategies (Rotation, Mixup, and MixCycleGAN).
Citation
Sasaki, H., Willcocks, C., & Breckon, T. (2021, January). Data Augmentation via Mixed Class Interpolation using Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery. Presented at 25th International Conference on Pattern Recognition (ICPR 2020), Milan, Italy
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 25th International Conference on Pattern Recognition (ICPR 2020) |
Start Date | Jan 10, 2021 |
End Date | Jan 15, 2021 |
Acceptance Date | Oct 11, 2020 |
Online Publication Date | May 5, 2021 |
Publication Date | 2021 |
Deposit Date | Oct 25, 2020 |
Publicly Available Date | Oct 27, 2020 |
Series ISSN | 1051-4651 |
DOI | https://doi.org/10.1109/icpr48806.2021.9413023 |
Public URL | https://durham-repository.worktribe.com/output/1139505 |
Files
Accepted Conference Proceeding
(2 Mb)
PDF
Copyright Statement
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
Dynamic Unary Convolution in Transformers
(2023)
Journal Article
Deep Learning Protein Conformational Space with Convolutions and Latent Interpolations
(2021)
Journal Article
The relationship between curvilinear structure enhancement and ridge detection approaches
(2020)
Journal Article
Sequential graph-based extraction of curvilinear structures
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search