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Abstract—Machine learning driven object detection and
classification within non-visible imagery has an important role
in many fields such as night vision, all-weather surveillance and
aviation security. However, such applications often suffer due to
the limited quantity and variety of non-visible spectral domain
imagery, in contrast to the high data availability of visible-band
imagery that readily enables contemporary deep learning driven
detection and classification approaches. To address this problem,
this paper proposes and evaluates a novel data augmentation
approach that leverages the more readily available visible-band
imagery via a generative domain transfer model. The model
can synthesise large volumes of non-visible domain imagery by
image-to-image (I2I) translation from the visible image domain.
Furthermore, we show that the generation of interpolated
mixed class (non-visible domain) image examples via our
novel Conditional CycleGAN Mixup Augmentation (C2GMA)
methodology can lead to a significant improvement in the quality
of non-visible domain classification tasks that otherwise suffer
due to limited data availability. Focusing on classification within
the Synthetic Aperture Radar (SAR) domain, our approach is
evaluated on a variation of the Statoil/C-CORE Iceberg Classifier
Challenge dataset and achieves 75.4% accuracy, demonstrating a
significant improvement when compared against traditional data
augmentation strategies (Rotation, Mixup, and MixCycleGAN).

I. INTRODUCTION

The demand for automated pattern recognition, especially
automatic object detection and classification in imagery,
is continuously expanding. In computer vision, there are
many applications utilising automatic pattern recognition,
for example, optical character recognition [1], video
surveillance [2], agricultural analysis from satellite
imagery [3], and defect detection in factory automation [4].
These functions are enabled by recent advances in machine
learning, namely deep neural networks (DNN) [5]. DNN
have enabled hitherto unprecedented performance on various
challenging computer vision tasks such as image classification,
object detection, semantic segmentation and temporal video
analysis.

This expansion, both in demand and performance, has led
to the broader consideration of computer vision applications in
imagery domains beyond the visible spectrum, i.e. non-visible
images such as infrared (thermal) [6], synthetic aperture
radar (SAR) [7] and X-ray images [8]. Imaging within the
non-visible spectrum provides sensing capabilities ranging
from all-weather visibility, object temperature, material
characteristics and sub-surface/object transparency. Whilst

Fig. 1: Conceptual illustration of our novel data augmentation
approach for generating cross-domain, class-interpolated
image instances.

DNN approaches have predominately been applied to visible
domain imagery, they are readily applied across the non-visible
spectrum. However, the primary challenge is the low data
availability in these additional spectral imaging domains.
Whilst contemporary DNN approaches generally perform well
in domains with large amounts of data available, within the
non-visible imaging domain data availability is often more
limited and it can be difficult to collect enough image samples
to provide sufficient variability and coverage of the target
data distribution expected at inference (test, deployment) time.
For example, SAR imagery is far less readily available and
accessible due to both the lesser prevalence of this sensing
technology and its associated costs. In addition, SAR imagery
substantially differs from visible-band imagery because it
results from active sensing by microwave radar backscatter
projection, whilst visible images are captured passively
according to the intensity of reflected scene illumination.
Moreover, SAR imagery is significantly impacted by the
choice of microwave bands in use and by the angle of
microwave transmission. These variations from conventional
imagery that preclude the direct applicability of commonplace
transfer learning solutions, coupled with the lack of data
availability, further inhibit inter-task applications with such



diverse sensor imagery.
In order to address this issue of DNN model generalisation

under such limited data availability, data augmentation
methods such as geometric image transformation and
pixel-wise intensity transformations are traditionally adopted.
However, such methods tend to synthesise images which
are highly biased to both the prior assumptions of this
augmentation and the prior distribution of the already limited
dataset in use. An alternative solution, more specific to object
classification tasks, involves blending a pair of input images of
different classes to smooth the classification decision boundary
during the training [9]. This approach can be effective when
there are few training examples (limited data availability), but
remains highly sensitive to biases in the input samples. To
overcome these issues, recent research into image synthesis
and dataset augmentation has focused on stochastic generative
models, which can create a variety of high-quality images [10].
In particular, image-to-image (I2I) translation models are able
to generate samples by mapping between image domains [11],
whereas standard generative models synthesise images by
transforming random values sampled from a simpler prior
distribution. I2I translation is particularly effective when there
are few images in a desired domain and large quantities of
data available in another indirectly related domain, such as
in the context of SAR images and publicly available visible
images.

Taking this into consideration, we exploit the potential of
I2I translation as a dataset augmentation strategy and develop
a new I2I translation model, adopted from Cycle-Consistent
Generative Adversarial Networks (CycleGAN) [11]. In
particular, we modify CycleGAN by manipulating class
conditional information and generating class-interpolated
images (Figure 1), as described in detail in Section III. The
experiments supporting our method, within the context of
SAR object classification, are presented in Section IV with
subsequent conclusions presented in Section V.

II. RELATED WORK

Many data augmentation approaches within a computer
vision context have been proposed and divided into two
sub-types: unsupervised and supervised [12].

A. Unsupervised Data Augmentation

An unsupervised approach aims to increase the quantity of
training imagery via a set of fixed geometric and pixel-wise
image processing operations to transform an existing dataset
image (e.g. flipping, rotation, cropping, adding noise, etc.
[12]).

Mixup [9] is a recent approach that blends pairs of randomly
chosen training images using randomly weighted blending
rates to avoid overfitting. In addition, [13] [14] [15] [16]
have shown the effectiveness of partially masking image
sub-regions to force generalisation during model training.
Instead of zero maskings, CutMix [17] replaces these regions
with a region of the same size from another training set image
and provides an improvement in performance.

B. Supervised Data Augmentation

While unsupervised methods can reduce overfitting, the
trained models are often unable to accurately model patterns
or trends that appear within the test distribution that are
infrequent within the training data distribution. This is largely
due to the fact that unsupervised augmentation approaches
transform data sampled from the same underlying training
distribution, therefore their outputs reflect the inherent biases
and patterns in this original training distribution. In order
to overcome this issue, several supervised approaches have
been proposed that instead generate new images using
additional label information to improve generalisation between
domains [18] [19].

Manifold Mixup [18] is a modification of Mixup. This
interpolates not only input images and their associated
output labels but also latent information within the hidden
layers. This attempts to increase the novelty of data samples
generated by latent information level processing. Meanwhile,
data augmentation via diversification of image style was
proposed [19]. Utilising a style transfer network [20], a DNN
trained to transfer the style from one image to another while
preserving its semantic content, they additionally augmented
their training data via image style randomisation.

Generative Adversarial Networks (GAN) [10] have
significantly impacted data augmentation within DNN training.
GAN is a generative DNN architecture, designed to have
a generator and a discriminator component that compete
against each other during its training process. The generator
is trained to map randomised values to real data examples by
the discriminator output. The discriminator is simultaneously
trained to discriminate real and fake data examples produced
by the generator. The objective function is defined as:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))] (1)

where G and D are the generator and discriminator
respectively. x is input data and z is random noise. As a result
of training the generator within this GAN architecture, it is
hence optimised to create realistic, yet artificial data that is
statistically similar (drawn from the same distribution) as the
real data. The GAN architecture has been shown to be effective
with convolutional neural networks, popularised by Deep
Convolutional GAN (DCGAN) [21]. A Conditional GAN
(cGAN) [22] was proposed to modify the GAN architecture to
take account of classes by adding class labels into the inputs
of the generator and discriminator. The objective function (1)
is modified as:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[logD(x|y)] +

Ez∼pz(z)[log(1−D(G(z|y)|y))] (2)

where y is the category label given in the objective function.
Moreover, another GAN variant, called Auxiliary Classifier
GAN (ACGAN) [23], implemented classification in addition
to generative modelling. This architecture trains its network



to minimise the distance of between both the real and fake
data examples and the actual and predicted category labels.
While such conditional information was initially implemented
as a concatenation of the input and output of the networks,
other methods find that the conditional information can be
incorporated into the normalisation layers to significantly
improve the generated results [24] [25]. These normalisation
layers are called the conditional normalisation layers and
the generators are modified as G(z, e(y)), where e is the
embedding function. The effectiveness of this conditional label
embedding has been not only been used in the generator, but
also to the discriminator. This ‘projection discriminator’ is
implemented by an inner product of the embedded one-hot
labels and the intermediate layer outputs [26].

A large corpus of images from other related domains can
also be useful for increasing training data in some cases.
Generating new images by transferring from another domain
image set, which is called I2I translation, has the possibility of
expanding the distribution of training data such that it retains
more of the structure of real images rather than the synthesised
images generated only from vectors of noise. CycleGAN [11]
is one of the expansions of GAN specified in I2I translation.
In this method, G and D are trained to transfer from source
images xs ∈ Xs to target images xt ∈ Xt. This not only
learns a lateral transform, but also the bilateral transform
paths Gt(xs), Gs(xt). In addition, this adopts a new loss
measure named a cycle-consistency loss Lcyc(Gs, Gt), which
is represented as:

Lcyc(Gs, Gt) = Exs∈Xs
[‖Gs(Gt(xs))− xs‖1] +

Ext∈Xt
[‖Gt(Gs(xt))− xt‖1] (3)

In total, the full objective function is:

min
Gs,Gt

max
Ds,Dt

V (Ds, Gs) + V (Dt, Gt) + λcycLcyc(Gs, Gt) (4)

where λcyc is a cycle-consistency loss weight.
MixCycleGAN [27] applies a ‘mixup’ operation to the

CycleGAN process to stabilise the training and increase the
variety of the generated outputs. This method splits an input
image into two rectangular regions vertically or horizontally
and replaces one region with that of another image:

x̄ = cat(x1[: λH, :], x2[(1− λ)H :, :])

or cat(x1[:, : λW ], x2[:, (1− λ)W :]) (5)

where, x̄ is the mixed image, x1, x2 ∈ X are the input
images, H,W are the height and width of the input images
respectively, and cat is a concatenation function. λ ∈ [0, 1]
is the mixup ratio, and λ ∼ Beta(α, α) is from the beta
distribution Beta, in which α is constantly set as in [9]. The
preprocessed mixed image x̄ is input to the generator G of
CycleGAN to synthesise a fake image. The discriminator D
is modified to estimate the mixup ratio from the alpha-blended
real and fake images, which is optimised as:

minEx∈X [log |λ−D(λx+ (1− λ)G(x̄))|] (6)

Fig. 2: Overall flow of our conditional CycleGAN model.

Our approach is similar to MixCycleGAN. However,
while MixCycleGAN stitches rectangular image regions and
does not use class labels, our approach adopts cGAN
with the conditional normalisation layers and the projection
discriminator to allow the class labels as input for the
generator to enforce synthesising class-specific images. This
proposed strategy enables generation of more sophisticated
class-interpolated images by alpha-blending of the input
images and class labels, rather than with a simple rectangular
image region mixup. The details of these are described in
Section III.

III. METHODOLOGY

The proposed method assumes a source domain dataset
(xis, y

i
s) ∈ XN

s and a target domain dataset (xjt , y
j
t ) ∈ XM

t

which consist of N and M(� N) samples respectively. xis
and xjt are the images themselves and yis and yjt are class
labels. The types of classes are common in both domains.

Initially, a generative model, which transfers between two
different domains, is built using the conditional CycleGAN
approach. In order to prevent mode collapse and stabilise
training, Spectral Normalization [28] is combined with the
gradient penalty [29] as proposed in [30]. Furthermore,
as discussed previously, we apply conditional regularisation
of cGAN to our CycleGAN model by implementing
conditional normalisation layers and projection discriminators
to improve the output quality. The overall flow is shown in
(Figure 2) where, unlike ordinary CycleGAN, the generator
and discriminator functions are conditioned on the class labels.
The objective function is defined as a simple sum of weighted
terms:

L = λsLGs
+ λtLGt

+ λsLDs
+ λtLDt

+

λsλcycLcycs + λtλcycLcyct (7)



where:

LGs
=

E(xj
t ,y

j
t )∈Xt

[log(1−Ds(Gs(x
j
t , et(y

j
t )), es(y

j
t )))] (8)

LGt =

E(xi
s,y

i
s)∈Xs

[log(1−Dt(Gt(x
i
s, es(y

i
s)), et(y

i
s)))] (9)

LDs
= E(xi

s,y
i
s)∈Xs

[log(1−Ds(x
i
s, es(y

i
s)))] +

E(xj
t ,y

j
t )∈Xt

[log(Ds(Gs(x
j
t , et(y

j
t )), es(y

j
t )))] +

λgpE(x̂j
s,ŷ

j
s)∼Px̂s,ŷs

[(‖∇Ds(x̂
j
s, es(ŷ

j
s))‖2 − 1)](10)

LDt
= E(xj

t ,y
j
t )∈Xt

[log(1−Dt(x
j
t , et(y

j
t )))] +

E(xi
s,y

i
s)∈Xs

[log(Dt(Gt(x
i
s, es(y

i
s)), et(y

i
s)))] +

λgpE(x̂j
t ,ŷ

j
t )∼Px̂t,ŷt

[(‖∇Dt(x̂
j
t , et(ŷ

j
t ))‖2 − 1)] (11)

Lcycs =

E(xi
s,y

i
s)∈Xs

[‖(Gs(Gt(x
i
s, es(y

i
s)), et(y

i
s))−xis)‖1] (12)

Lcyct =

E(xj
t ,y

j
t )∈Xt

[‖(Gt(Gs(x
j
t , et(y

j
t )), es(y

j
t ))−xjt )‖1] (13)

λs and λt are source domain and target domain weights,
respectively. λgp is a weight of the gradient penalty. That
is, we balance the corresponding generator and discriminator
functions with the cycle-consistency losses for both the source
and target domains accordingly.

After training, the model is used for the synthesis of
new class-conditioned images via the domain transfer. A pair
of images and class labels in the source domain dataset
(xis, y

i
s), (x

j
s, y

j
s) ∈ XN

s are used as an input. Subsequently,
the input is processed to produce a tuple of a mixed image,
label, and embedded feature vector (x̄ks , ȳ

k
s , ē

k
s), defined by:

x̄ks = xis ∗ λ+ xjs ∗ (1− λ) (14)
ȳks = yis ∗ λ+ yjs ∗ (1− λ) (15)

ēks = es(y
i
s) ∗ λ+ es(y

j
s) ∗ (1− λ) (16)

where λ ∈ [0, 1] is the mixup ratio, and λ ∼ Beta(α, α) from
the beta distribution Beta, in which α is constantly set as in
[9]. As a result, the mixed pair (x̃kt , ỹ

k
t ) that is input to the

generator and discriminator is defined, where:

(x̃kt , ỹ
k
t ) = (Gt(x̄

k
s , ē

k
s), ȳks ) (17)

As a result, N samples X̃N
t = {(x̃kt , ỹkt )} are synthesised.

The new fake samples are combined with the original dataset
as XM

t ∪ X̃N
t , where we denote this method as Conditional

CycleGAN Mixup Augmentation (C2GMA).

IV. EXPERIMENTS

The method is evaluated in the context of the ships/icebergs
SAR classification task using the Statoil/C-CORE Iceberg
Classifier Challenge dataset [31]. Results are compared
between classification models trained with and without
existing dataset augmentation approaches in addition to our
proposed CycleGAN driven C2GMA (Section III) approaches.

Fig. 3: SAR ships/icebergs images divided into three groups
based on difficulty of discrimination by distance, angle, object
size, etc.

A. Dataset

The Statoil/C-CORE Iceberg Classifier Challenge dataset
[31] has a collection of satellite SAR images of ships and
icebergs, each with 75 × 75 pixels. The dataset comprises
of a training set with images labelled as either a ship or an
iceberg, alongside a set of unlabelled test images. We use only
the labelled training data in our experiments (we split this
labelled data into different groups for evaluation, discussed
subsequently). Each sample in the data is represented by
2-channel floating-point images according to the two different
channels of microwave echos: HH and HV. The values in the
HH channel are the intensity of the horizontally echos of the
horizontal transmitted microwave, whereas the HV channel
is the intensity of the vertical echos of the same transmitted
microwave.

A challenge of assessing the generalisation performance,
given a dataset sampled from a single distribution, is that it
does not reflect the case where the distribution of data under
the expected testing conditions differs from the distribution of
data sampled for training. Therefore, we split the dataset into
three groups of discriminable classes, from which the images
are sampled at different ratios between training and testing.
We initially combine the two channels into one channel:

I(x, y) =
√
IHH(x, y)2 + IHV(x, y)2 (18)

where I(x, y), IHH(x, y), and IHV(x, y) are the pixel values
of the combined image, the HH image, and the HV image
at (x, y) respectively. The dataset is then subdivided into
three groups by hand for each class: (a) easily discriminable
sets, (b) moderately discriminable sets, and (c) difficult cases
(Figure 3).

Each of the groups is partitioned into training and testing
splits and subsampled at different ratios, where specifically we
distort the distribution of the training sets to simulate further



TABLE I: The number of samples in the experiment dataset
separated by the test set and the three different training sets.
The columns (a), (b), and (c) represent: easily identifiable
samples, moderate samples, and difficult samples.

Ship Iceberg
(a) (b) (c) total (a) (b) (c) total

Test 97 158 171 426 99 137 141 377
Train #1 96 15 17 128 99 13 14 126
Train #2 96 15 17 128 9 137 14 160
Train #3 96 15 17 128 9 13 140 162

Fig. 4: Visible images from [32] (domain transfer source).

imbalance and mismatch between the training distribution and
the expected testing data distribution. These splits, and the
corresponding skewed subsamplings, are shown in Table I.

In order to augment the training datasets using our proposed
method, we use the satellite visible image dataset named
DOTA [32], which is a collection of commercial satellite
images containing many objects such as vehicles annotated
with bounding boxes and class labels. Therefore we use visible
and SAR image pairs with SAR images originating from the
Statoil/C-CORE Iceberg Classifier Challenge dataset [31] and
visible images from the DOTA [32] dataset. Due to the lack of
iceberg visible images within either dataset, we pair iceberg
SAR images from the Statoil/C-CORE Iceberg Classifier
Challenge dataset [31] with representative non-ship images
from the DOTA [32] dataset, for which purposes we use visible
images of vehicles. Despite this obvious semantic mismatch
in the second pairing, our I2I translation model specifically
synthesises images conforming to the true distribution of the
SAR iceberg images as enforced by the discriminator criteria
of the loss function in Equation (11).

Initially, visible object images are extracted from the visible
dataset using the annotations. Each extracted image is resized

Fig. 5: Poor quality visible images illustrating blurriness and
multiple objects (which we eliminate).

Fig. 6: Our network architecture:- Conditional Batch
Normalisation layers are applied to every convolutional layer
within the Generator whilst Instance Normalisation layers
and Spectral Normalization are applied to every convolutional
layer within the Discriminator.

in the same way as the SAR image, and its rotations adjusted
accordingly. The backgrounds are set to black, which prevents
including surrounding objects, which would be undesirable
(Figure 4). The source domain visible dataset exhibits several
images that are unclear or incorrect, as in Figure 5. Such
images are eliminated based on their distances from the
median of all of the images within each class. These distances
are measured in the latent spaces trained by a Variational
Autoencoder [33] on individual classes. Using the encoder,
all of the images are embedded in a lower dimensional latent
space that follows an approximate normal distribution, and the
distances of each sample d(xci ) are calculated:

d(xci ) =

√
(f ce (xci )−Mc)TSc−1(fe(xci )−Mc) (19)

Sc = E[(fe(x
c
i )−Mc)(fe(x

c
i )−Mc)T ] (20)

where xci is the i − th input sample of class c, fe is the
encoder, and Mc is the median of the encoded features in
class c. Sc is a normalisation factor for each dimension of the
feature vectors in class c. Half of the shorter distance samples
are selected for each class, subsampling 14,034 visible ship
images and 13,063 visible vehicles, resulting in clearer data
and higher-quality annotations for use as our source domain.

B. Training Domain Transfer Model

Domain transfer models, as described in Section III,
are trained using the SAR images for each training
split, where 1,500 ships and 1,500 vehicles images are
subsampled from the visible images, prepared as previously
outlined. The network architecture used in this experiment
is shown in Figure 6, which follows a standard residual
generative network, and the discriminator function uses
Spectral Normalization on the convolutional layers. The
network training parameters are: λs = λt = 10.0, λcyc = 1.0,



(a) Ships

(b) Icebergs

(c) Mixed

Fig. 7: Examples of the generated SAR images (Train #1): (a)
and (b) are the individual class images. (c) are the inter-class
images sorted by the class labels from ship to iceberg.

λgp = 0.01, batch size B = 32, and number of critics = 2,
187,500 training iterations and optimised with Adam [34]
(initial learning rate η = 0.0001, β1 = 0.5, β2 = 0.999).

C. Data Augmentation

Fake SAR images are synthesised using the visible images
as the input of our transfer model, as discussed. This results
in 3,000 generated SAR images, where examples of these
generated images are shown in Figure 7. Additionally, we plot
the real SAR images and fake SAR images using t-SNE [35]
(Figure 8) to show how the different distributions interrelate.
This plot shows that the fake SAR images are well-distributed
around the real SAR images.

D. Evaluation on Object Classification Task

Evaluation of the classifier performance uses the simple
Alexnet architecture [36], where the classifier performance is

Fig. 8: t-SNE plot of ship (top) and iceberg (bottom) images
from the test, training and generated datasets (Train #1).

compared under the following conditions:

• BL: Only using the original training data [31]
• ROT: BL + rotated 90, 180, and 270 degrees
• MIXUP: Mixup [9] (α = 0.2)
• MIXCG: BL + MixCycleGAN [27] (α=0.2)
• C2GMA: (Ours) BL + C2GMA (α=0.2, Section III)

The MixCycleGAN model in this experiment is trained with
the same training parameters as our method uses.

The classifiers are trained with the three training datasets, as
denoted in Table I, where the hyperparameters are optimised
with the Stochastic Gradient Descent algorithm (η = 0.02,
number of epochs = 200, B = 512). Performance is assessed
via the testing dataset also outlined in Table I, using statistical
accuracy (A), precision (P), recall (R) and F1-score (F1) (Table
II).



TABLE II: Overall classification results: accuracy (A), precision (P), recall (R), and F1-score (F1) on the common test set for
each of training sets #1–3.

Train #1 Train #2 Train #3
A P R F1 A P R F1 A P R F1

BL 0.715 0.746 0.725 0.735 0.469 0.469 0.500 0.484 0.469 0.469 0.500 0.484
ROT 0.707 0.723 0.714 0.719 0.469 0.469 0.500 0.484 0.469 0.469 0.500 0.484

MIXUP [9] 0.766 0.794 0.775 0.784 0.690 0.728 0.701 0.714 0.690 0.694 0.681 0.688
MIXCG [27] 0.760 0.765 0.764 0.765 0.757 0.783 0.766 0.776 0.676 0.708 0.687 0.697

C2GMA (Ours) 0.800 0.807 0.804 0.806 0.771 0.795 0.779 0.787 0.691 0.729 0.703 0.716
Average

A P R F1
BL 0.551 ± 0.142 0.562 ± 0.160 0.575 ± 0.130 0.568 ± 0.145

ROT 0.549 ± 0.137 0.554 ± 0.146 0.571 ± 0.124 0.562 ± 0.135
MIXUP [9] 0.715 ± 0.044 0.739 ± 0.051 0.719 ± 0.049 0.729 ± 0.050

MIXCG [27] 0.730 ± 0.048 0.752 ± 0.039 0.739 ± 0.045 0.745 ± 0.042
C2GMA (Ours) 0.754 ± 0.056 0.777 ± 0.042 0.762 ± 0.053 0.769 ± 0.047

Quantitative results are shown in Table II, alongside the
additional individual per-class classification performances for
ships and icebergs, shown in the confusion matrices in
Figure 9. The overall results show that our proposed C2GMA
data augmentation approach significantly outperforms the
other approaches (BL, ROT, MIXUP [9], and MIXCG [27]).
We find that generating new images using our approach
increases training data appropriately, where the process of
synthesising inter-class images is shown to provide significant
improvements for the overall classification performance
(C2GMA, Table II).

V. CONCLUSION

This paper proposes and evaluates a CycleGAN enabled
data augmentation approach, Conditional CycleGAN Mixup
Augmentation (C2GMA), to address the challenge of effective
data augmentation within cross-domain imagery where the
availability of one of the domains is limited. In particular,
we show that the generation of interpolated mixed class
(non-visible domain) image examples via our novel C2GMA
methodology leads to a significant improvement in the quality
of non-visible domain classification tasks that suffer due to
limited data availability and variety. Focusing on classification
within the synthetic aperture radar domain, our approach
is evaluated on a variation of the Statoil/C-CORE Iceberg
Classifier Challenge dataset and achieves 75.4% accuracy,
demonstrating a significant improvement when compared
against traditional augmentation strategies. Future work will
consider DNN architecture modifications to enable generation
of higher quality images for improved classification results and
applications to other non-visible band imaging domains.
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