M.E. Cruz Victorio
Price Forecast Methodologies Comparison for Microgrid Control with Multi-Agent Systems
Cruz Victorio, M.E.; Kazemtabrizi, B.; Shahbazi, M.
Authors
Dr Behzad Kazemtabrizi behzad.kazemtabrizi@durham.ac.uk
Associate Professor
Dr Mahmoud Shahbazi mahmoud.shahbazi@durham.ac.uk
Associate Professor
Abstract
Multi-Agent systems offer a way to control distributed generation in microgrids, reliability and cost minimisation capabilities can be improved by price forecast methodologies that can be deployed without the need of external control signals. This paper presents and compares two suitable electricity price forecast methodologies for use in distributed control of Microgrids’ resources using Multi-Agents: Markov Chain Monte Carlo simulations with heuristic and numerical optimisation and price prediction with Non-linear Auto Regressive Artificial Neural Networks with different internal architectures. The methods are evaluated using MAPE and RMSE functions for the UK electricity market data. It was found that the proposed heuristic model has less error than the Neural Networks only when the price data contains outliers.
Citation
Cruz Victorio, M., Kazemtabrizi, B., & Shahbazi, M. (2023, June). Price Forecast Methodologies Comparison for Microgrid Control with Multi-Agent Systems. Presented at 14th IEEE PES PowerTech Conference, Madrid, Spain
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 14th IEEE PES PowerTech Conference |
Start Date | Jun 28, 2023 |
End Date | Jul 2, 2021 |
Acceptance Date | Feb 28, 2021 |
Online Publication Date | Jul 29, 2021 |
Publication Date | 2021 |
Deposit Date | May 17, 2021 |
Publicly Available Date | Jul 3, 2021 |
Publisher | Institute of Electrical and Electronics Engineers |
DOI | https://doi.org/10.1109/powertech46648.2021.9494970 |
Public URL | https://durham-repository.worktribe.com/output/1138865 |
Files
Accepted Conference Proceeding
(2 Mb)
PDF
Copyright Statement
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
Statistical Evaluation of Wind Speed Forecast Models for Microgrid Distributed Control
(2022)
Journal Article
Distributed Real-Time Power Management in Microgrids using Multi-agent Control with Provisions of Fault Tolerance
(2020)
Presentation / Conference Contribution
Decentralised Real-time Optimisation of Power Management in Microgrids Using Multi-Agent Control
(2019)
Presentation / Conference Contribution
Data-driven estimation of the amount of under frequency load shedding in small power systems
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search