Skip to main content

Research Repository

Advanced Search

Outputs (3)

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes (2022)
Presentation / Conference Contribution
Bond-Taylor, S., Hessey, P., Sasaki, H., Breckon, T., & Willcocks, C. (2022, October). Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes. Presented at ECCV 2022: European Conference on Computer Vision, Tel Aviv, Israel

Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have... Read More about Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes.

MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray (2022)
Presentation / Conference Contribution
Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H. P., & Willcocks, C. G. (2022, July). MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. Presented at 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland

Computed tomography (CT) is an effective med-ical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, inclu... Read More about MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray.

Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models (2021)
Journal Article
Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2021). Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7327-7347. https://doi.org/10.1109/tpami.2021.3116668

Deep generative models are a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time, diversit... Read More about Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models.