Skip to main content

Research Repository

Advanced Search

Outputs (58)

Tackling Data Bias in Painting Classification with Style Transfer (2023)
Presentation / Conference Contribution
Vijendran, M., Li, F. W., & Shum, H. P. (2023, February). Tackling Data Bias in Painting Classification with Style Transfer. Presented at VISAPP '23: 2023 International Conference on Computer Vision Theory and Applications, Lisbon, Portugal

It is difficult to train classifiers on paintings collections due to model bias from domain gaps and data bias from the uneven distribution of artistic styles. Previous techniques like data distillation, traditional data augmentation and style transf... Read More about Tackling Data Bias in Painting Classification with Style Transfer.

C2SPoint: A classification-to-saliency network for point cloud saliency detection (2023)
Journal Article
Jiang, Z., Ding, L., Tam, G., Song, C., Li, F. W., & Yang, B. (online). C2SPoint: A classification-to-saliency network for point cloud saliency detection. Computers and Graphics, 115, 274-284. https://doi.org/10.1016/j.cag.2023.07.003

Point cloud saliency detection is an important technique that support downstream tasks in 3D graphics and vision, like 3D model simplification, compression, reconstruction and viewpoint selection. Existing approaches often rely on hand-crafted featur... Read More about C2SPoint: A classification-to-saliency network for point cloud saliency detection.

IAACS: Image Aesthetic Assessment Through Color Composition And Space Formation (2023)
Journal Article
Yang, B., zhu, C., Li, F. W., Wei, T., Liang, X., & Wang, Q. (2023). IAACS: Image Aesthetic Assessment Through Color Composition And Space Formation. Virtual Reality & Intelligent Hardware, 5(1), https://doi.org/10.1016/j.vrih.2022.06.006

Judging how an image is visually appealing is a complicated and subjective task. This highly motivates having a machine learning model to automatically evaluate image aesthetic by matching the aesthetics of general public. Although deep learning meth... Read More about IAACS: Image Aesthetic Assessment Through Color Composition And Space Formation.

A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis (2023)
Journal Article
Zhou, K., Cai, R., Ma, Y., Tan, Q., Wang, X., Li, J., Shum, H. P., Li, F. W., Jin, S., & Liang, X. (2023). A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis. IEEE Transactions on Visualization and Computer Graphics, 29(5), 2456-2466. https://doi.org/10.1109/tvcg.2023.3247092

As the most common idiopathic inflammatory myopathy in children, juvenile dermatomyositis (JDM) is characterized by skin rashes and muscle weakness. The childhood myositis assessment scale (CMAS) is commonly used to measure the degree of muscle invol... Read More about A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis.

Aesthetic Enhancement via Color Area and Location Awareness (2022)
Presentation / Conference Contribution
Yang, B., Wang, Q., Li, F. W., Liang, X., Wei, T., & Zhu, C. (2022, October). Aesthetic Enhancement via Color Area and Location Awareness. Presented at The 30th Pacific Conference on Computer Graphics and Applications, Pacific Graphics 2022, Kyoto, Japan

Choosing a suitable color palette can typically improve image aesthetic, where a naive way is choosing harmonious colors from some pre-defined color combinations in color wheels. However, color palettes only consider the usage of color types without... Read More about Aesthetic Enhancement via Color Area and Location Awareness.

Gamifying Experiential Learning Theory (2022)
Presentation / Conference Contribution
Alsaqqaf, A., & Li, F. W. (2022, December). Gamifying Experiential Learning Theory. Presented at International Conference On Web-Based Learning (ICWL 2022), Tenerife, Spain

STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction Recognition in Videos (2022)
Presentation / Conference Contribution
Almushyti, M., & Li, F. W. (2022, August). STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction Recognition in Videos. Presented at 2022 26th International Conference on Pattern Recognition (ICPR), Montréal, Québec

Recognizing human-object interactions is challenging due to their spatio-temporal changes. We propose the SpatioTemporal Interaction Transformer-based (STIT) network to reason such changes. Specifically, spatial transformers learn humans and objects... Read More about STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction Recognition in Videos.

Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos (2022)
Presentation / Conference Contribution
Qiao, T., Men, Q., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H. P. (2022, October). Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos. Presented at Computer Vision - ECCV 2022, Tel Aviv, Israel

Human-Object Interaction (HOI) recognition in videos is important for analysing human activity. Most existing work focusing on visual features usually suffer from occlusion in the real-world scenarios. Such a problem will be further complicated when... Read More about Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos.

Distillation of human–object interaction contexts for action recognition (2022)
Journal Article
Almushyti, M., & Li, F. W. (2022). Distillation of human–object interaction contexts for action recognition. Computer Animation and Virtual Worlds, 33(5), Article e2107. https://doi.org/10.1002/cav.2107

Modeling spatial-temporal relations is imperative for recognizing human actions, especially when a human is interacting with objects, while multiple objects appear around the human differently over time. Most existing action recognition models focus... Read More about Distillation of human–object interaction contexts for action recognition.

STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising (2021)
Presentation / Conference Contribution
Zhou, K., Cheng, Z., Shum, H. P., Li, F. W., & Liang, X. (2021, October). STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising. Presented at 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy

Hand object interaction in mixed reality (MR) relies on the accurate tracking and estimation of human hands, which provide users with a sense of immersion. However, raw captured hand motion data always contains errors such as joints occlusion, disloc... Read More about STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising.

Facial reshaping operator for controllable face beautification (2020)
Journal Article
Hu, S., Shum, H. P., Liang, X., Li, F. W., & Aslam, N. (2021). Facial reshaping operator for controllable face beautification. Expert Systems with Applications, 167, Article 114067. https://doi.org/10.1016/j.eswa.2020.114067

Posting attractive facial photos is part of everyday life in the social media era. Motivated by the demand, we propose a lightweight method to automatically and efficiently beautify the shapes of both portrait and non-portrait faces in photos, while... Read More about Facial reshaping operator for controllable face beautification.

Target‐driven cloud evolution using position‐based fluids (2020)
Journal Article
Zhang, Z., Li, Y., Yang, B., Li, F. W., & Liang, X. (2020). Target‐driven cloud evolution using position‐based fluids. Computer Animation and Virtual Worlds, 31(6), https://doi.org/10.1002/cav.1937

To effectively control particle‐based cloud evolution without imposing strict position constraints, we propose a novel method integrating a control force field and a phase transition control into the position‐based fluids (PBF) framework. To produce... Read More about Target‐driven cloud evolution using position‐based fluids.

Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network (2020)
Journal Article
Zhang, Z., Ma, Y., Li, Y., Li, F. W., Shum, H. P., Yang, B., Guo, J., & Liang, X. (2020). Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network. Graphical Models, 111, Article 101083. https://doi.org/10.1016/j.gmod.2020.101083

Physically-based cloud simulation is an effective approach for synthesizing realistic cloud. However, generating clouds with desired shapes requires a time-consuming process for selecting the appropriate simulation parameters. This paper addresses su... Read More about Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network.

Sparse Metric-based Mesh Saliency (2020)
Journal Article
Hu, S., Liang, X., Shum, H. P., Li, F. W., & Aslam, N. (2020). Sparse Metric-based Mesh Saliency. Neurocomputing, 400, 11-23. https://doi.org/10.1016/j.neucom.2020.02.106

In this paper, we propose an accurate and robust approach to salient region detection for 3D polygonal surface meshes. The salient regions of a mesh are those that geometrically stand out from their contexts and therefore are semantically important f... Read More about Sparse Metric-based Mesh Saliency.

Example-based Image Recoloring in Indoor Environment (2019)
Journal Article
Lin, X., Wang, X., Li, F. W., Li, J., Yang, B., Zhang, K., & Wei, T. (2020). Example-based Image Recoloring in Indoor Environment. Computer Animation and Virtual Worlds, 31(2), Article e1917. https://doi.org/10.1002/cav.1917

Color structure of a home scene image closely relates to the material properties of its local regions. Existing color migration methods typically fail to fully infer the correlation between the coloring of local home scene regions, leading to a local... Read More about Example-based Image Recoloring in Indoor Environment.

A Unified Deep Metric Representation for Mesh Saliency Detection and Non-rigid Shape Matching (2019)
Journal Article
Hu, S., Shum, H., Aslam, N., Li, F. W., & Liang, X. (2020). A Unified Deep Metric Representation for Mesh Saliency Detection and Non-rigid Shape Matching. IEEE Transactions on Multimedia, 22(9), 2278-2292. https://doi.org/10.1109/tmm.2019.2952983

In this paper, we propose a deep metric for unifying the representation of mesh saliency detection and non-rigid shape matching. While saliency detection and shape matching are two closely related and fundamental tasks in shape analysis, previous met... Read More about A Unified Deep Metric Representation for Mesh Saliency Detection and Non-rigid Shape Matching.

A Color-Pair Based Approach for Accurate Color Harmony Estimation (2019)
Journal Article
Yang, B., Wei, T., Fang, X., Deng, Z., Li, F. W., Ling, Y., & Wang, X. (2019). A Color-Pair Based Approach for Accurate Color Harmony Estimation. Computer Graphics Forum, 38(7), 481-490. https://doi.org/10.1111/cgf.13854

Harmonious color combinations can stimulate positive user emotional responses. However, a widely open research question is: how can we establish a robust and accurate color harmony measure for the public and professional designers to identify the har... Read More about A Color-Pair Based Approach for Accurate Color Harmony Estimation.

Recognising Human-Object Interactions Using Attention-based LSTMs (2019)
Presentation / Conference Contribution
Almushyti, M., & Li, F. W. (2019, December). Recognising Human-Object Interactions Using Attention-based LSTMs. Presented at Computer Graphics and Visual Computing (CGVC), Bangor University, United Kingdom

Recognising Human-object interactions (HOIs) in videos is a challenge task especially when a human can interact with multiple objects. This paper attempts to solve the problem of HOIs by proposing a hierarchical framework that analyzes human-object i... Read More about Recognising Human-Object Interactions Using Attention-based LSTMs.

Deep Blind Synthesized Image Quality Assessment with Contextual Multi-Level Feature Pooling (2019)
Presentation / Conference Contribution
Wang, X., Wang, K., Yang, B., Li, F. W., & Liang, X. (2019, December). Deep Blind Synthesized Image Quality Assessment with Contextual Multi-Level Feature Pooling. Presented at 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan

Blind image quality metrics have achieved significant improvement on traditional 2D image dataset, yet still being insufficient for evaluating synthesized images generated from depth-image-based rendering. The geometric distortions in synthesized ima... Read More about Deep Blind Synthesized Image Quality Assessment with Contextual Multi-Level Feature Pooling.

Motion-aware Compression and Transmission of Mesh Animation Sequences (2019)
Journal Article
Yang, B., Zhang, L., Li, F. W., Xiaoheng, J., Zhigang, D., Wang, M., & Xu, M. (2019). Motion-aware Compression and Transmission of Mesh Animation Sequences. ACM Transactions on Intelligent Systems and Technology, 10(3), Article 25. https://doi.org/10.1145/3300198

With the increasing demand in using 3D mesh data over networks, supporting effective compression and efficient transmission of meshes has caught lots of attention in recent years. This article introduces a novel compression method for 3D mesh animati... Read More about Motion-aware Compression and Transmission of Mesh Animation Sequences.