Skip to main content

Research Repository

Advanced Search

Outputs (58)

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J., Sumner, E. J., Clare, M. A., Hughes Clarke, J. E., Talling, P. J., Lintern, D. G., Simmons, S. M., Silva Jacinto, R., Vellinga, A. J., Allin, J. R., Azpiroz‐Zabala, M., Gales, J. A., Hizzett, J. L., Hunt, J. E., Mozzato, A., Parsons, D. R., Pope, E. L., Stacey, C. D., Symons, W. O., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical Research Letters, 46(20), 11310-11320. https://doi.org/10.1029/2019gl084526

Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet, how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California (2019)
Journal Article
Maier, K. L., Rosenberger, K. J., Paull, C. K., Gwiazda, R., Gales, J., Lorenson, T., Barry, J. P., Talling, P. J., McGann, M., Xu, J., Lundsten, E., Anderson, K., Litvin, S. Y., Parsons, D. R., Clare, M. A., Simmons, S. M., Sumner, E. J., & Cartigny, M. J. (2019). Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep Sea Research Part I: Oceanographic Research Papers, 153, Article 103108. https://doi.org/10.1016/j.dsr.2019.103108

Submarine canyons are globally important conduits for sediment and organic carbon transport into the deep sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water column sampling devices,... Read More about Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California.

Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream (2019)
Journal Article
Larter, R. D., Hogan, K. A., Hillenbrand, C.-D., Smith, J. A., Batchelor, C. L., Cartigny, M., Tate, A. J., Kirkham, J. D., Roseby, Z. A., Kuhn, G., Graham, A. G., & Dowdeswell, J. A. (2019). Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream. The Cryosphere, 13(6), 1583-1596. https://doi.org/10.5194/tc-13-1583-2019

Basal hydrological systems play an important role in controlling the dynamic behaviour of ice streams. Data showing their morphology and relationship to geological substrates beneath modern ice streams are, however, sparse and difficult to collect. W... Read More about Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream.

Daily bathymetric surveys document how stratigraphy is built and its extreme incompleteness in submarine channels (2019)
Journal Article
Vendettuoli, D., Clare, M., Hughes Clarke, J., Vellinga, A., Hizzet, J., Hage, S., Cartigny, M., Talling, P., Waltham, D., Hubbard, S., Stacey, C., & Lintern, D. (2019). Daily bathymetric surveys document how stratigraphy is built and its extreme incompleteness in submarine channels. Earth and Planetary Science Letters, 515, 231-247. https://doi.org/10.1016/j.epsl.2019.03.033

Turbidity currents are powerful flows of sediment that pose a hazard to critical seafloor infrastructure and transport globally important amounts of sediment to the deep sea. Due to challenges of direct monitoring, we typically rely on their deposits... Read More about Daily bathymetric surveys document how stratigraphy is built and its extreme incompleteness in submarine channels.

Complex and Cascading Triggering of Submarine Landslides and Turbidity Currents at Volcanic Islands Revealed From Integration of High-Resolution Onshore and Offshore Surveys (2018)
Journal Article
Clare, M. A., Le Bas, T., Price, D. M., Hunt, J. E., Sear, D., Cartigny, M. J., Vellinga, A., Symons, W., Firth, C., & Cronin, S. (2018). Complex and Cascading Triggering of Submarine Landslides and Turbidity Currents at Volcanic Islands Revealed From Integration of High-Resolution Onshore and Offshore Surveys. Frontiers in Earth Science, 6, Article 223. https://doi.org/10.3389/feart.2018.00223

Submerged flanks of volcanic islands are prone to hazards including submarine landslides that may trigger damaging tsunamis and sediment-laden seafloor flows (called “turbidity currents”). These hazards can break seafloor infrastructure which is crit... Read More about Complex and Cascading Triggering of Submarine Landslides and Turbidity Currents at Volcanic Islands Revealed From Integration of High-Resolution Onshore and Offshore Surveys.

Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring (2018)
Journal Article
Wu, X., Baas, J. H., Parsons, D. R., Eggenhuisen, J., Amoudry, L., Cartigny, M., McLelland, S., Mouazé, D., & Ruessink, G. (2018). Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring. Journal of Geophysical Research: Earth Surface, 123(11), 2784-2801. https://doi.org/10.1029/2018jf004681

Based on bedform experiments in a large‐scale flume, we demonstrate that the rate of development of wave ripples on a mixed sand–clay bed under regular waves is significantly lower than on a pure‐sand bed, even at clay fractions as low as 4.2%, and t... Read More about Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring.

Powerful turbidity currents driven by dense basal layers (2018)
Journal Article
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., Gwiazda, R., Lundsten, E. M., Anderson, K., Barry, J. P., Chaffey, M., O’Reilly, T., Rosenberger, K. J., Gales, J. A., Kieft, B., McGann, M., Simmons, S. M., McCann, M., Sumner, E. J., Clare, M. A., & Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature Communications, 9(1), Article 4114. https://doi.org/10.1038/s41467-018-06254-6

Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirel... Read More about Powerful turbidity currents driven by dense basal layers.

What controls submarine channel development and the morphology of deltas entering deep-water fjords? (2018)
Journal Article
Gales, J., Talling, P., Cartigny, M., Hughes Clarke, J., Lintern, G., Stacey, C., & Clare, M. (2019). What controls submarine channel development and the morphology of deltas entering deep-water fjords?. Earth Surface Processes and Landforms, 44(2), 535-551. https://doi.org/10.1002/esp.4515

River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially... Read More about What controls submarine channel development and the morphology of deltas entering deep-water fjords?.

How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: insights from active submarine channels (2018)
Journal Article
Hage, S., Cartigny, M., Clare, M., Sumner, E., Vendettuoli, D., Hughes Clarke, J., …Vellinga, A. (2018). How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: insights from active submarine channels. Geology, 46(6), 563-566. https://doi.org/10.1130/g40095.1

Submarine channels have been important throughout geologic time for feeding globally significant volumes of sediment from land to the deep sea. Modern observations show that submarine channels can be sculpted by supercritical turbidity currents (seaf... Read More about How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: insights from active submarine channels.

Origin of spectacular fields of submarine sediment waves around volcanic islands: distinguishing eruption-fed supercritical flow bedforms from slope failures (2018)
Journal Article
Pope, E. L., Jutzeler, M., Cartigny, M. J., Shreeve, J., Talling, P. J., Wright, I. C., & Wysoczanski, R. J. (2018). Origin of spectacular fields of submarine sediment waves around volcanic islands: distinguishing eruption-fed supercritical flow bedforms from slope failures. Earth and Planetary Science Letters, 493, 12-24. https://doi.org/10.1016/j.epsl.2018.04.020

Understanding how large eruptions and landslides are recorded by seafloor morphology and deposits on volcanic island flanks is important for reconstruction of volcanic island history and geohazard assessment. Spectacular fields of bedforms have been... Read More about Origin of spectacular fields of submarine sediment waves around volcanic islands: distinguishing eruption-fed supercritical flow bedforms from slope failures.

Which triggers produce the most erosive, frequent and longest runout turbidity currents on deltas? (2018)
Journal Article
Hizzett, J., Hughes Clarke, J., Sumner, E., Cartigny, M., Talling, P., & Clare, M. (2018). Which triggers produce the most erosive, frequent and longest runout turbidity currents on deltas?. Geophysical Research Letters, 45(2), 855-863. https://doi.org/10.1002/2017gl075751

Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously it was thought that slope failures or direct... Read More about Which triggers produce the most erosive, frequent and longest runout turbidity currents on deltas?.

A general model for the helical structure of geophysical flows in channel bends (2017)
Journal Article
Azpiroz-Zabala, M., Cartigny, M., Sumner, E., Clare, M., Talling, P., Parsons, D., & Cooper, C. (2017). A general model for the helical structure of geophysical flows in channel bends. Geophysical Research Letters, 44(23), 11,932-11,941. https://doi.org/10.1002/2017gl075721

Meandering channels formed by geophysical flows (e.g. rivers and seafloor turbidity currents) include the most extensive sediment transport systems on Earth. Previous measurements from rivers show how helical flow at meander bends plays a key role in... Read More about A general model for the helical structure of geophysical flows in channel bends.

Linking submarine channel-levee facies and architecture to flow structure of turbidity currents: insights from flume tank experiments (2017)
Journal Article
de Leeuw, J., Eggenhuisen, J. T., & Cartigny, M. J. (2018). Linking submarine channel-levee facies and architecture to flow structure of turbidity currents: insights from flume tank experiments. Sedimentology, 65(3), 931-951. https://doi.org/10.1111/sed.12411

Submarine leveed channels are sculpted by turbidity currents that are commonly highly stratified. Both the concentration and the grain size decrease upward in the flow, and this is a fundamental factor that affects the location and grain size of depo... Read More about Linking submarine channel-levee facies and architecture to flow structure of turbidity currents: insights from flume tank experiments.

Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons (2017)
Journal Article
Azpiroz-Zabala, M., Cartigny, M., Talling, P., Parsons, D., Sumner, E., Clare, M., …Pope, E. (2017). Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 3(10), Article e1700200. https://doi.org/10.1126/sciadv.1700200

Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity c... Read More about Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

Direct monitoring of active geohazards: emerging geophysical tools for deep-water assessments (2017)
Journal Article
Clare, M., Vardy, M., Cartigny, M., Talling, P., Himsworth, M., Dix, J., …Belal, M. (2017). Direct monitoring of active geohazards: emerging geophysical tools for deep-water assessments. Near Surface Geophysics, 15(4), 427-444. https://doi.org/10.3997/1873-0604.2017033

Seafloor networks of cables, pipelines, and other infrastructure underpin our daily lives, providing communication links, information, and energy supplies. Despite their global importance, these networks are vulnerable to damage by a number of natura... Read More about Direct monitoring of active geohazards: emerging geophysical tools for deep-water assessments.

Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model (2017)
Journal Article
Vellinga, A. J., Cartigny, M. J., Eggenhuisen, J. T., & Hansen, E. W. (2018). Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model. Sedimentology, 65(2), 540-560. https://doi.org/10.1111/sed.12391

Bedforms related to Froude-supercritical flow, such as cyclic steps, are increasingly frequently observed in contemporary fluvial and marine sedimentary systems. However, the number of observations of sedimentary structures formed by supercritical-fl... Read More about Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model.

Physical theory for near-bed turbulent particle suspension capacity (2017)
Journal Article
Eggenhuisen, J. T., Cartigny, M. J., & de Leeuw, J. (2017). Physical theory for near-bed turbulent particle suspension capacity. Earth Surface Dynamics, 5(2), 269-281. https://doi.org/10.5194/esurf-5-269-2017

The inability to capture the physics of solid-particle suspension in turbulent fluids in simple formulas is holding back the application of multiphase fluid dynamics techniques to many practical problems in nature and society involving particle suspe... Read More about Physical theory for near-bed turbulent particle suspension capacity.

A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon (2017)
Journal Article
Symons, W., Sumner, E., Paull, C., Cartigny, M., Xu, J., Maier, K., …Talling, P. (2017). A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon. Geology, 45(4), 367-370. https://doi.org/10.1130/g38764.1

Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedim... Read More about A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon.

Multiple Flow Slide Experiment in the Westerschelde Estuary, The Netherlands (2016)
Presentation / Conference Contribution
Mastbergen, D., van den Ham, G., Cartigny, M., Koelewijn, A., de Kleine, M., Clare, M., Hizzett, J., Azpiroz, M., & Vellinga, A. (2016, December). Multiple Flow Slide Experiment in the Westerschelde Estuary, The Netherlands. Presented at Submarine Mass Movements And Their Consequences