Skip to main content

Research Repository

Advanced Search

Outputs (3)

Temporal vertex cover with a sliding time window (2019)
Journal Article
Akrida, E., Mertzios, G., Spirakis, P., & Zamaraev, V. (2020). Temporal vertex cover with a sliding time window. Journal of Computer and System Sciences, 107, 108-123. https://doi.org/10.1016/j.jcss.2019.08.002

Modern, inherently dynamic systems are usually characterized by a network structure which is subject to discrete changes over time. Given a static underlying graph, a temporal graph can be represented via an assignment of a set of integer time-labels... Read More about Temporal vertex cover with a sliding time window.

How fast can we reach a target vertex in stochastic temporal graphs? (2019)
Presentation / Conference Contribution
Akrida, E. C., Mertzios, G. B., Nikoletseas, S., Christoforos, R., Spirakis, P. G., & Zamaraev, V. (2019, July). How fast can we reach a target vertex in stochastic temporal graphs?. Presented at 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), Patras, Greece

Temporal graphs are used to abstractly model real-life networks that are inherently dynamic in nature, in the sense that the network structure undergoes discrete changes over time. Given a static underlying graph G=(V,E), a temporal graph on G is a s... Read More about How fast can we reach a target vertex in stochastic temporal graphs?.

The temporal explorer who returns to the base (2019)
Presentation / Conference Contribution
Akrida, E., Mertzios, G., & Spirakis, P. (2019, December). The temporal explorer who returns to the base. Presented at 11th International Conference on Algorithms and Complexity (CIAC 2019), Rome, Italy

In this paper we study the problem of exploring a temporal graph (i.e. a graph that changes over time), in the fundamental case where the underlying static graph is a star on n vertices. The aim of the exploration problem in a temporal star is to fin... Read More about The temporal explorer who returns to the base.