Skip to main content

Research Repository

Advanced Search

Outputs (4)

Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 2: crystallinity and supra molecular structure (2020)
Journal Article
Bucknall, C., Altstädt, V., Auhl, D., Buckley, P., Dijkstra, D., Galeski, A., Gögelein, C., Handge, U. A., He, J., Liu, C.-Y., Michler, G., Piorkowska, E., Slouf, M., Vittorias, I., & Wu, J. J. (2020). Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 2: crystallinity and supra molecular structure. Pure and Applied Chemistry, 92(9), 1485-1501. https://doi.org/10.1515/pac-2019-0403

Test methods including OM, SEM, TEM, DSC, SAXS, WAXS, and IR were used to characterise supra-molecular structure in three batches of polyethylene (PE), which had weight-average relative molar masses ¯¯¯¯ M w of approximately 0.6 × 106, 5 × 106, and 9... Read More about Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 2: crystallinity and supra molecular structure.

Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 3: deformation, wear and fracture (2020)
Journal Article
Bucknall, C., Altstädt, V., Auhl, D., Buckley, P., Dijkstra, D., Galeski, A., Gögelein, C., Handge, U. A., He, J., Liu, C.-Y., Michler, G., Piorkowska, E., Slouf, M., Vittorias, I., & Wu, J. J. (2020). Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 3: deformation, wear and fracture. Pure and Applied Chemistry, 92(9), 1503-1519. https://doi.org/10.1515/pac-2019-0406

Three grades of polyethylene, with weight-average relative molar masses, ¯¯¯¯ M W , of approximately 0.6 × 106, 5 × 106, and 9 × 106, were supplied as compression mouldings by a leading manufacturer of ultra-high molecular weight polyethylene (UHMWPE... Read More about Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 3: deformation, wear and fracture.

Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 4: sporadic fatigue crack propagation (2020)
Journal Article
Bucknall, C., Altstädt, V., Auhl, D., Buckley, P., Dijkstra, D., Galeski, A., Gögelein, C., Handge, U. A., He, J., Liu, C.-Y., Michler, G., Piorkowska, E., Slouf, M., Vittorias, I., & Wu, J. J. (2020). Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 4: sporadic fatigue crack propagation. Pure and Applied Chemistry, 92(9), 1521-1536. https://doi.org/10.1515/pac-2019-0408

Fatigue tests were carried out on compression mouldings supplied by a leading polymer manufacturer. They were made from three batches of ultra-high molecular weight polyethylene (UHMWPE) with weight-average relative molar masses, ¯¯¯¯ M W, of about 0... Read More about Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 4: sporadic fatigue crack propagation.

Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 1: characterizing molecular weight (2020)
Journal Article
Bucknall, C., Altstädt, V., Auhl, D., Buckley, P., Dijkstra, D., Galeski, A., Gögelein, C., Handge, U. A., He, J., Liu, C.-Y., Michler, G., Piorkowska, E., Slouf, M., Vittorias, I., & Wu, J. J. (2020). Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 1: characterizing molecular weight. Pure and Applied Chemistry, 92(9), 1469-1483. https://doi.org/10.1515/pac-2019-0405

The aim of this project was to study the efficacy of current methods of quality control and quality assurance for ultra-high molecular weight polyethylene (UHMWPE) products, and find improvements where possible. Intrinsic viscosity (IV) tests were pe... Read More about Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 1: characterizing molecular weight.