Skip to main content

Research Repository

Advanced Search

Outputs (6)

Microscopic Analysis of Interdiffusion and Void Formation in CdTe(1–x)Sex and CdTe Layers (2020)
Journal Article
Baines, T., Bowen, L., Mendis, B. G., & Major, J. D. (2020). Microscopic Analysis of Interdiffusion and Void Formation in CdTe(1–x)Sex and CdTe Layers. ACS Applied Materials and Interfaces, 12(34), 38070-38075. https://doi.org/10.1021/acsami.0c09381

The use of CdSe layers has recently emerged as a route to improving CdTe photovoltaics through the formation of a CdTe(1–x)Sex (CST) phase. However, the extent of the Se diffusion and the influence it has on the CdTe grain structure has not been wide... Read More about Microscopic Analysis of Interdiffusion and Void Formation in CdTe(1–x)Sex and CdTe Layers.

Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes (2020)
Journal Article
Galan Gonzalez, A., Sivan, A. K., Hernández Ferrer, J., Bowen, L., Di Mario, L., Martelli, F., Benito, A. M., Maser, W. K., Chaudhry, M. U., Gallant, A., Zeze, D. A., & Atkinson, D. (2020). Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes. ACS Applied Nano Material, 3(8), 7781-7788. https://doi.org/10.1021/acsanm.0c01325

Developing highly efficient and stable photoelectrochemical (PEC) water splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO... Read More about Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes.

A contactless method for measuring the recombination velocity of an individual grain boundary in thin-film photovoltaics (2010)
Journal Article
Mendis, B., Bowen, L., & Jiang, Q. (2010). A contactless method for measuring the recombination velocity of an individual grain boundary in thin-film photovoltaics. Applied Physics Letters, 97(9), Article 092112. https://doi.org/10.1063/1.3486482

A cathodoluminescence-based, contactless method for extracting the bulk minority carrier diffusion length and reduced recombination velocity of an individual grain boundary is applied to vapor grown CdTe epitaxial films. The measured diffusion length... Read More about A contactless method for measuring the recombination velocity of an individual grain boundary in thin-film photovoltaics.

Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy (2010)
Journal Article
Cirlin, G., Dubrovskii, V., Samsonenko, Y., Bouravleuv, A., Durose, K., Proskruryakov, Y., Mendes, B., Bowen, L., Kaliteevski, M., Abram, R., & Zeze, D. (2010). Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Physical review B - Condensed Matter and Materials Physics, 82(3), Article 035302. https://doi.org/10.1103/physrevb.82.035302

We report on the Au-free molecular beam epitaxy growth of coherent GaAs nanowires directly on Si(111) substrates. The growth is catalyzed by liquid Ga droplets formed in the openings of a native oxide layer at the initial growth stage. Transmission e... Read More about Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy.