Skip to main content

Research Repository

Advanced Search

Outputs (10)

Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus (2021)
Journal Article
Azmi, N. N., Mahyudin, N. A., Wan Omar, W. H., Mahmud Ab Rashid, N.-K., Ishak, C. F., Abdullah, A. H., & Sharples, G. J. (2022). Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus. Molecules, 27(1), Article 170. https://doi.org/10.3390/molecules27010170

Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This s... Read More about Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus.

Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc (2021)
Journal Article
Paterson, J. R., Beecroft, M. S., Mulla, R. S., Osman, D., Reeder, N. L., Caserta, J. A., Young, T. R., Pettigrew, C. A., Davies, G. E., Williams, J. G., & Sharples, G. J. (2022). Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc. Applied and Environmental Microbiology, 88(2), Article e01641-21. https://doi.org/10.1128/aem.01641-21

Bacterial growth and proliferation can be restricted by limiting the availability of metal ions in their environment. Humans sequester iron, manganese and zinc to help prevent infection by pathogens, a system termed nutritional immunity. Commercially... Read More about Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc.

Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces (2021)
Journal Article
Cox, H. J., Gibson, C. P., Sharples, G. J., & Badyal, J. P. S. (2022). Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces. Advanced Engineering Materials, 24(6), Article 2101288. https://doi.org/10.1002/adem.202101288

Inspired by the carnivorous Nepenthes pitcher plant, a range of highly liquid repellent lubricant-infused surfaces has been devised (low water droplet contact angle hysteresis and sliding angle values). This entails matching functional pulsed plasma... Read More about Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces.

The Histidine Ammonia Lyase of Trypanosoma cruzi is Involved in Acidocalcisome Alkalinization and is Essential for Survival under Starvation Conditions (2021)
Journal Article
Mantilla, B., Azevedo, C., Denny, P., Saiardi, A., & Docampo, R. (2021). The Histidine Ammonia Lyase of Trypanosoma cruzi is Involved in Acidocalcisome Alkalinization and is Essential for Survival under Starvation Conditions. mBio, 12(6), https://doi.org/10.1128/mbio.01981-21

Trypanosoma cruzi, the agent of Chagas disease, accumulates polyphosphate (polyP) and Ca2+ inside acidocalcisomes. The alkalinization of this organelle stimulates polyP hydrolysis and Ca2+ release. Here, we report that histidine ammonia lyase (HAL),... Read More about The Histidine Ammonia Lyase of Trypanosoma cruzi is Involved in Acidocalcisome Alkalinization and is Essential for Survival under Starvation Conditions.

Chalcones identify cTXNPx as a potential antileishmanial drug target (2021)
Journal Article
Escrivani, D. O., Charlton, R. L., Caruso, M. B., Burle-Caldas, G. A., Borsodi, M. P. G., Zingali, R. B., Arruda-Costa, N., Palmeira-Mello, M. V., de Jesus, J. B., Souza, A. M., Abrahim-Vieira, B., Freitag-Pohl, S., Pohl, E., Denny, P. W., Rossi-Bergmann, B., & Steel, P. G. (2021). Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Neglected Tropical Diseases, 15(11), Article e0009951. https://doi.org/10.1371/journal.pntd.0009951

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-met... Read More about Chalcones identify cTXNPx as a potential antileishmanial drug target.

Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation (2021)
Journal Article
Cox, H. J., Sharples, G. J., & Badyal, J. P. S. (2021). Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation. ACS Applied Nano Material, 4(11), 12619-12628. https://doi.org/10.1021/acsanm.1c03151

Natural plant-derived antimicrobial nanocoatings have been synthesized by mixing brewed tea with cinnamaldehyde oil. Concurrent addition of copper or silver salts produces hybrid tea–cinnamaldehyde–copper or tea–cinnamaldehyde–silver nanocoatings, re... Read More about Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation.

The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis (2021)
Journal Article
Alencar, V. C., Silva, J. D. F. D. S., Vilas Boas, R. O., Farnézio, V. M., de Maria, Y. N., Aciole Barbosa, D., Almeida, A. T., de Souza, E. M., Müller-Santos, M., Jabes, D. L., Menegidio, F. B., Costa de Oliveira, R., Rodrigues, T., Tersariol, I. L. D. S., Walmsley, A. R., & Nunes, L. R. (2021). The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. International Journal of Molecular Sciences, 22(11), https://doi.org/10.3390/ijms22115628

Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bi... Read More about The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis.

Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana (2021)
Journal Article
Karunakaran, K., Sundriyal, S., Perera, H., Cobb, S. L., & Denny, P. W. (2021). Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana. mSystems, 6(3), Article e00089-21. https://doi.org/10.1128/msystems.00089-21

Heat shock protein 90 (Hsp90) is a conserved molecular chaperone responsible for the folding and maturation of nascent proteins. Hsp90 is regarded as a master regulator of protein homeostasis in the cell, and its inhibition affects the functions of a... Read More about Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana.

Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces (2021)
Journal Article
Cox, H. J., Li, J., Saini, P., Paterson, J. R., Sharples, G. J., & Badyal, J. P. S. (2021). Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. Journal of Materials Chemistry B: Materials for biology and medicine, 9(12), 2918-2930. https://doi.org/10.1039/d0tb02379e

Antimicrobial essential oils are incorporated into mussel-inspired and natural plant polyphenol coatings as part of a single-step fabrication process. Polydopamine–cinnamaldehyde, polyethyleneimine–cinnamaldehyde, and tannic acid–cinnamaldehyde coati... Read More about Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces.