Temporal neighbourhood aggregation: predicting future links in temporal graphs via recurrent variational graph convolutions
(2019)
Presentation / Conference Contribution
Bonner, S., Atapour-Abarghouei, A., Jackson, P., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, S., & Obara, B. (2019, December). Temporal neighbourhood aggregation: predicting future links in temporal graphs via recurrent variational graph convolutions. Presented at IEEE International Conference on Big Data (Deep Graph Learning: Methodologies and Applications), Los Angeles, CA, USA
Graphs have become a crucial way to represent large, complex and often temporal datasets across a wide range of scientific disciplines. However, when graphs are used as input to machine learning models, this rich temporal information is frequently di... Read More about Temporal neighbourhood aggregation: predicting future links in temporal graphs via recurrent variational graph convolutions.