Skip to main content

Research Repository

Advanced Search

Professor Suzanne Fielding's Outputs (3)

Slow Coarsening in Jammed Athermal Soft Particle Suspensions (2019)
Journal Article
Chacko, R., Sollich, P., & Fielding, S. (2019). Slow Coarsening in Jammed Athermal Soft Particle Suspensions. Physical Review Letters, 123(10), Article 108001. https://doi.org/10.1103/physrevlett.123.108001

We simulate a densely jammed, athermal assembly of repulsive soft particles immersed in a solvent. Starting from an initial condition corresponding to a quench from a high temperature, we find nontrivial slow dynamics driven by a gradual release of s... Read More about Slow Coarsening in Jammed Athermal Soft Particle Suspensions.

Edge fracture instability in sheared complex fluids: Onset criterion and possible mitigation strategy (2019)
Journal Article
Hemingway, E. J., & Fielding, S. M. (2019). Edge fracture instability in sheared complex fluids: Onset criterion and possible mitigation strategy. Journal of Rheology, 63(5), https://doi.org/10.1122/1.5095717

We perform a detailed theoretical study of the edge fracture instability, which commonly destabilizes the fluid-air interface during strong shear flows of entangled polymeric fluids, leading to unreliable rheological measurements. By means of direct... Read More about Edge fracture instability in sheared complex fluids: Onset criterion and possible mitigation strategy.

Linear instability of shear thinning pressure driven channel flow (2019)
Journal Article
Barlow, H., Hemingway, E., Clarke, A., & Fielding, S. (2019). Linear instability of shear thinning pressure driven channel flow. Journal of Non-Newtonian Fluid Mechanics, 270, 66-78. https://doi.org/10.1016/j.jnnfm.2019.07.004

We study theoretically pressure driven planar channel flow of shear thinning viscoelastic fluids. Combining linear stability analysis and full nonlinear simulation, we study the instability of an initially one-dimensional base state to the of two-dim... Read More about Linear instability of shear thinning pressure driven channel flow.