Skip to main content

Research Repository

Advanced Search

Professor Buddhika Mendis' Outputs (5)

An inelastic multislice simulation method incorporating plasmon energy losses (2019)
Journal Article
Mendis, B. (2019). An inelastic multislice simulation method incorporating plasmon energy losses. Ultramicroscopy, 206, Article 112816. https://doi.org/10.1016/j.ultramic.2019.112816

Quantitative electron microscopy requires accurate simulation methods that take into account both elastic and inelastic scattering of the high energy electrons within the specimen. Here a method to combine plasmon excitations, the dominant energy los... Read More about An inelastic multislice simulation method incorporating plasmon energy losses.

Planck's generalised radiation law and its implications for cathodoluminescence spectra (2019)
Journal Article
Mendis, B. (2019). Planck's generalised radiation law and its implications for cathodoluminescence spectra. Ultramicroscopy, 204, 73-80. https://doi.org/10.1016/j.ultramic.2019.05.007

Cathodoluminescence (CL) is an important analytical technique for probing the optical properties of materials at high spatial resolution. Interpretation of CL spectra is however complicated by the fact that the spectrum depends on the carrier injecti... Read More about Planck's generalised radiation law and its implications for cathodoluminescence spectra.

Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells (2019)
Journal Article
Fiducia, T. A., Mendis, B. G., Li, K., Grovenor, C. R., Munshi, A. H., Barth, K., Sampath, W. S., Wright, L. D., Abbas, A., Bowers, J. W., & Walls, J. M. (2019). Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nature Energy, 4, 504-511. https://doi.org/10.1038/s41560-019-0389-z

Electricity produced by cadmium telluride (CdTe) photovoltaic modules is the lowest-cost electricity in the solar industry, and now undercuts fossil fuel-based sources in many regions of the world. This is due to recent efficiency gains brought about... Read More about Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells.

Fully depleted emitter layers: a novel method to improve band alignment in thin-film solar cells (2019)
Journal Article
Mendis, B. (2019). Fully depleted emitter layers: a novel method to improve band alignment in thin-film solar cells. Semiconductor Science and Technology, 34(5), Article 055008. https://doi.org/10.1088/1361-6641/ab0c2b

The interface between the emitter and absorber layers in a thin-film solar cell must satisfy two important criteria, namely a small lattice mismatch and electron barrier height. It is shown that the barrier height is lowered when the emitter is fully... Read More about Fully depleted emitter layers: a novel method to improve band alignment in thin-film solar cells.

Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells (2019)
Journal Article
Mendis, B. G., Ramasse, Q. M., Shalvey, T., Major, J. D., & Durose, K. (2019). Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells. ACS Applied Energy Materials, 2(2), 1419-1427. https://doi.org/10.1021/acsaem.8b01995

CdTe thin-film solar cells have complex microstructures, such as grain boundaries within the absorber layer, as well as CdS window, and Au back contact interfaces, where the local structure and chemistry undergo significant changes. The optical prope... Read More about Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells.