Skip to main content

Research Repository

Advanced Search

Professor Charles Augarde's Outputs (196)

A stable poro-mechanical formulation for Material Point Methods leveraging overlapping meshes and multi-field ghost penalisation (2025)
Journal Article
Pretti, G., Bird, R., Gavin, N., Coombs, W., & Augarde, C. (2025). A stable poro-mechanical formulation for Material Point Methods leveraging overlapping meshes and multi-field ghost penalisation. International Journal for Numerical Methods in Engineering, 126(5), Article e7630

The Material Point Method (MPM) is widely used to analyse coupled (solid-water) problems under large deformations/displacements. However, if not addressed carefully, MPM u-p formulations for poro-mechanics can be affected by two major sources of inst... Read More about A stable poro-mechanical formulation for Material Point Methods leveraging overlapping meshes and multi-field ghost penalisation.

A review of chemical stabilisation and fibre reinforcement techniques used to enhance the mechanical properties of rammed earth (2025)
Journal Article
Thompson, D., Augarde, C., & Osorio, J. P. (in press). A review of chemical stabilisation and fibre reinforcement techniques used to enhance the mechanical properties of rammed earth. Discover Civil Engineering, 2(1), Article 27. https://doi.org/10.1007/s44290-025-00184-1

Rammed earth is a sustainable construction method with a lower carbon footprint and embodied energy compared to traditional materials like steel and concrete. However, its lower mechanical properties when compared to these forms of construction make... Read More about A review of chemical stabilisation and fibre reinforcement techniques used to enhance the mechanical properties of rammed earth.

Layered soils in the shallow subsurface (<6.0 m), North Sea: a data report (2024)
Report
Johnson, K. R., Carter, G., & Macdonald, C. (2024). Layered soils in the shallow subsurface (

The Carbon Trust (2015) “Cable Burial Risk Assessment (CBRA) Methodology” document is widely used in the offshore subsea cable industry to define the cable burial Depth of Lowering (DoL). To-date, published work on anchor penetration depths has focus... Read More about Layered soils in the shallow subsurface (<6.0 m), North Sea: a data report.

An implicit material point-to-rigid body contact approach for large deformation soil-structure interaction (2024)
Journal Article
Bird, R., Pretti, G., Coombs, W., Augarde, C., Sharif, Y., Brown, M., Carter, G., Macdonald, C., & Johnson, K. (2024). An implicit material point-to-rigid body contact approach for large deformation soil-structure interaction. Computers and Geotechnics, 174, Article 106646. https://doi.org/10.1016/j.compgeo.2024.106646

Modelling the interaction between rigid and deformable bodies holds significant relevance in geotechnical engineering, particularly in scenarios involving stiff engineering objects interacting with highly deformable material such as soil. These proce... Read More about An implicit material point-to-rigid body contact approach for large deformation soil-structure interaction.

UKACM Proceedings 2024 (2024)
Presentation / Conference Contribution
(2024, April). UKACM Proceedings 2024. Presented at 2024 UK Association for Computational Mechanics Conference, Durham, UK

The proceedings present 52 scientific papers written for the 32nd conference of the UK Association for Computational Mechanics (UKACM). The papers submitted to UKACM 2024 cover the breadth of computational mechanics research within the UK and beyond... Read More about UKACM Proceedings 2024.

Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics (2024)
Presentation / Conference Contribution
Pretti, G., Coombs, W. M., & Augarde, C. E. (2024, April). Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics. Presented at 2024 UK Association for Computational Mechanics Conference, Durham, UK

Poro-mechanics is a branch of mechanics considering the hydro-mechanical behaviour of a porous solid medium whose pores are saturated by a fluid. The presence of both these constituents significantly influences the overall macro-response of the mater... Read More about Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics.

Simulation of strain localisation with an elastoplastic micropolar material point method (2024)
Presentation / Conference Contribution
O'Hare, T. J., Gourgiotis, P. A., Coombs, W. M., & Augarde, C. E. (2024, April). Simulation of strain localisation with an elastoplastic micropolar material point method. Presented at 2024 UK Association for Computational Mechanics Conference, Durham, UK

The thickness of shear bands, which form along slip surfaces during certain modes of geotechnical failure, depends directly on the size of the soil particles. Classical continuum models, however, are invariant to length scale, so the strain localisat... Read More about Simulation of strain localisation with an elastoplastic micropolar material point method.

Dynamic three-dimensional rigid body interaction with highly deformable solids, a material point approach (2024)
Presentation / Conference Contribution
Bird, R., Pretti, G., Coombs, W., Augarde, C., Sharif, Y., Brown, M., Carter, G., Macdonald, C., & Johnson, K. (2024, April). Dynamic three-dimensional rigid body interaction with highly deformable solids, a material point approach. Presented at UK Association for Computational Mechanics Conference 2024, Durham, UK

The ability to model rigid body interaction with highly deformable solids is a very useful tool in geoengineering, including the modelling of drag anchors on seabeds and seabed ploughing [7, 1]. However, these simulations entail several numerical cha... Read More about Dynamic three-dimensional rigid body interaction with highly deformable solids, a material point approach.

Preserving non-negative porosity values in a bi-phase elasto-plastic material under Terzaghi’s effective stress principle (2024)
Journal Article
Pretti, G., Coombs, W., Augarde, C., Marchena Puigvert, M., & Reyna Gutierrez, J. A. (2024). Preserving non-negative porosity values in a bi-phase elasto-plastic material under Terzaghi’s effective stress principle. Mechanics of Materials, 192, Article 104958. https://doi.org/10.1016/j.mechmat.2024.104958

Poromechanics is a well-established field of continuum mechanics which seeks to model materials with multiple phases, usually a stiff solid phase and fluid phases of liquids or gases. Applications are widespread particularly in geomechanics where Ter... Read More about Preserving non-negative porosity values in a bi-phase elasto-plastic material under Terzaghi’s effective stress principle.

On the implementation of a material point‐based arc‐length method (2024)
Journal Article
Gavin, N., Pretti, G., Coombs, W., Brigham, J., & Augarde, C. (2024). On the implementation of a material point‐based arc‐length method. International Journal for Numerical Methods in Engineering, 125(9), Article e7438. https://doi.org/10.1002/nme.7438

Summary: The material point method is a versatile technique which can be used to solve various types of solid mechanics problems, especially those involving large deformations. However, the capability of the material point method to track a load‐disp... Read More about On the implementation of a material point‐based arc‐length method.

Cone Penetration Tests (CPTs) in layered soils: a Material Point approach (2023)
Presentation / Conference Contribution
Bird, R., Coombs, W., Augarde, C., Brown, M., Sharif, Y., Carter, G., Johnson, K., & Macdonald, C. (2023, June). Cone Penetration Tests (CPTs) in layered soils: a Material Point approach. Presented at 10th European Conference on Numerical Methods in Geotechnical Engineering, London

Cone Penetration Tests (CPTs) can be used to determine in-situ soil properties and represent a practical choice for site investigation offshore, especially for linear infrastructure, such as offshore wind export cables. Information gained from CPTs i... Read More about Cone Penetration Tests (CPTs) in layered soils: a Material Point approach.

On the development of a material point method compatible arc length solver for large deformation solid mechanics (2023)
Presentation / Conference Contribution
Gavin, N., Coombs, W., Brigham, J., & Augarde, C. (2023, April). On the development of a material point method compatible arc length solver for large deformation solid mechanics. Presented at UKACM 2023, Coventry, UK

The Material Point Method is a versatile technique, however, it may be unable to provide a valid solution if there is a snap-through or snap-back response in the equilibrium path. One approach of overcoming this issue is the use of path following tec... Read More about On the development of a material point method compatible arc length solver for large deformation solid mechanics.

An open-source Julia code for geotechnical MPM (2023)
Presentation / Conference Contribution
Gavin, N., Bird, R. E., Coombs, W. M., & Augarde, C. E. (2023, June). An open-source Julia code for geotechnical MPM. Presented at 10th European Conference on Numerical Methods in Geotechnical Engineering, London

There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard finite elem... Read More about An open-source Julia code for geotechnical MPM.

An implicit Material Point Method for micropolar solids undergoing large deformations (2023)
Journal Article
O'Hare, T., Gourgiotis, P., Coombs, W., & Augarde, C. (2024). An implicit Material Point Method for micropolar solids undergoing large deformations. Computer Methods in Applied Mechanics and Engineering, 419, Article 116668. https://doi.org/10.1016/j.cma.2023.116668

Modelling the mechanical behaviour of structural systems where the system size approaches that of the material microstructure (such as in MEMS) presents challenges to the standard continuum assumption and classical models can fail to predict importan... Read More about An implicit Material Point Method for micropolar solids undergoing large deformations.

Characterisation of anchor penetration behaviour for Cable burial risk assessment (2023)
Presentation / Conference Contribution
Sharif, Y. U., Brown, M. J., Coombs, W. M., Augarde, C. E., Bird, R. E., Carter, G., Macdonald, C., & Johnson, K. R. (2023, September). Characterisation of anchor penetration behaviour for Cable burial risk assessment. Presented at 9th Int. SUT OSIG Conference “Innovative Geotechnologies for Energy Transition”, London, UK

Offshore wind (OSW) power cable failure currently accounts for 75% of the cost of all insurance claims associated with OSW projects and faults typically take 100+ days to rectify. The most effective method for protecting the cables from anchor damage... Read More about Characterisation of anchor penetration behaviour for Cable burial risk assessment.

An hp-adaptive discontinuous Galerkin method for phase field fracture (2023)
Journal Article
Bird, R. E., Augarde, C. E., Coombs, W. M., Duddu, R., Giani, S., Huynh, P. T., & Sims, B. (2023). An hp-adaptive discontinuous Galerkin method for phase field fracture. Computer Methods in Applied Mechanics and Engineering, 416, Article 116336. https://doi.org/10.1016/j.cma.2023.116336

The phase field method is becoming the de facto choice for the numerical analysis of complex problems that involve multiple initiating, propagating, interacting, branching and merging fractures. However, within the context of finite element modelling... Read More about An hp-adaptive discontinuous Galerkin method for phase field fracture.

Towards a predictive model of the shear strength behaviour of fibre reinforced clay (2023)
Journal Article
Wang, J., Hughes, P. N., & Augarde, C. E. (online). Towards a predictive model of the shear strength behaviour of fibre reinforced clay. European Journal of Environmental and Civil Engineering, 28(2), 380-400. https://doi.org/10.1080/19648189.2023.2214596

Randomly distributed fibres can be a potential reinforcement material to improve the shear strength of soils. However, gaps remain in experimental research and predictive modelling of the shear strength of fibre reinforced high plasticity clays. In l... Read More about Towards a predictive model of the shear strength behaviour of fibre reinforced clay.

A geometrically-exact Finite Element Method for micropolar continua with finite deformations (2023)
Presentation / Conference Contribution
O'Hare, T. J., Gourgiotis, P. A., Coombs, W. M., & Augarde, C. E. (2023, April). A geometrically-exact Finite Element Method for micropolar continua with finite deformations. Paper presented at UKACM 2023, University of Warwick, Coventry, UK

Micropolar theory is a weakly non-local higher-order continuum theory based on the inclusion of independent (micro-)rotational degrees of freedom. Subsequent introduction of couple-stresses and an internal length scale mean the micropolar continuum i... Read More about A geometrically-exact Finite Element Method for micropolar continua with finite deformations.

Cone penetration tests (CPTs) in bi-phase soils: A material point approach with rigid body interaction (2023)
Presentation / Conference Contribution
Bird, R., Pretti, G., Coombs, W. M., Augarde, C. E., Sharif, Y., Brown, M., …Johnson, K. (2023, April). Cone penetration tests (CPTs) in bi-phase soils: A material point approach with rigid body interaction. Paper presented at UK Association for Computational Mechanics 2023 (UKACM 2023), University of Warwick, UK

Cone Penetration Tests (CPTs) can be used to determine in-situ material properties and represent a practical choice for site investigation offshore, especially for linear infrastructure, such as Offshore Wind export cables. Information gained from CP... Read More about Cone penetration tests (CPTs) in bi-phase soils: A material point approach with rigid body interaction.