Skip to main content

Research Repository

Advanced Search

Dr Gary Sharples' Outputs (5)

Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus (2021)
Journal Article
Azmi, N. N., Mahyudin, N. A., Wan Omar, W. H., Mahmud Ab Rashid, N.-K., Ishak, C. F., Abdullah, A. H., & Sharples, G. J. (2022). Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus. Molecules, 27(1), Article 170. https://doi.org/10.3390/molecules27010170

Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This s... Read More about Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus.

Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc (2021)
Journal Article
Paterson, J. R., Beecroft, M. S., Mulla, R. S., Osman, D., Reeder, N. L., Caserta, J. A., Young, T. R., Pettigrew, C. A., Davies, G. E., Williams, J. G., & Sharples, G. J. (2022). Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc. Applied and Environmental Microbiology, 88(2), Article e01641-21. https://doi.org/10.1128/aem.01641-21

Bacterial growth and proliferation can be restricted by limiting the availability of metal ions in their environment. Humans sequester iron, manganese and zinc to help prevent infection by pathogens, a system termed nutritional immunity. Commercially... Read More about Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc.

Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces (2021)
Journal Article
Cox, H. J., Gibson, C. P., Sharples, G. J., & Badyal, J. P. S. (2022). Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces. Advanced Engineering Materials, 24(6), Article 2101288. https://doi.org/10.1002/adem.202101288

Inspired by the carnivorous Nepenthes pitcher plant, a range of highly liquid repellent lubricant-infused surfaces has been devised (low water droplet contact angle hysteresis and sliding angle values). This entails matching functional pulsed plasma... Read More about Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces.

Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation (2021)
Journal Article
Cox, H. J., Sharples, G. J., & Badyal, J. P. S. (2021). Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation. ACS Applied Nano Material, 4(11), 12619-12628. https://doi.org/10.1021/acsanm.1c03151

Natural plant-derived antimicrobial nanocoatings have been synthesized by mixing brewed tea with cinnamaldehyde oil. Concurrent addition of copper or silver salts produces hybrid tea–cinnamaldehyde–copper or tea–cinnamaldehyde–silver nanocoatings, re... Read More about Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation.

Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces (2021)
Journal Article
Cox, H. J., Li, J., Saini, P., Paterson, J. R., Sharples, G. J., & Badyal, J. P. S. (2021). Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. Journal of Materials Chemistry B: Materials for biology and medicine, 9(12), 2918-2930. https://doi.org/10.1039/d0tb02379e

Antimicrobial essential oils are incorporated into mussel-inspired and natural plant polyphenol coatings as part of a single-step fabrication process. Polydopamine–cinnamaldehyde, polyethyleneimine–cinnamaldehyde, and tannic acid–cinnamaldehyde coati... Read More about Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces.