Skip to main content

Research Repository

Advanced Search

Samuel Bond-Taylor's Outputs (2)

Gradient Origin Networks (2021)
Presentation / Conference Contribution
Bond-Taylor, S., & Willcocks, C. G. (2021, May). Gradient Origin Networks. Presented at International Conference on Learning Representations, Vienna / Virtual

This paper proposes a new type of generative model that is able to quickly learn a latent representation without an encoder. This is achieved using empirical Bayes to calculate the expectation of the posterior, which is implemented by initialising a... Read More about Gradient Origin Networks.

Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models (2021)
Journal Article
Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2021). Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7327-7347. https://doi.org/10.1109/tpami.2021.3116668

Deep generative models are a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time, diversit... Read More about Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models.