Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Quantum and nonlinear effects in light transmitted through planar atomic arrays (2020)
Journal Article
Bettles, R. J., Lee, M. D., Gardiner, S. A., & Ruostekoski, J. (2020). Quantum and nonlinear effects in light transmitted through planar atomic arrays. Communications Physics, 3(1), Article 141. https://doi.org/10.1038/s42005-020-00404-3

Understanding strong cooperative optical responses in dense and cold atomic ensembles is vital for fundamental science and emerging quantum technologies. Methodologies for characterizing light-induced quantum effects in such systems, however, are sti... Read More about Quantum and nonlinear effects in light transmitted through planar atomic arrays.

Topological properties of a dense atomic lattice gas (2017)
Journal Article
Bettles, R. J., Minář, J., Adams, C. S., Lesanovsky, I., & Olmos, B. (2017). Topological properties of a dense atomic lattice gas. Physical Review A, 96(4), Article 041603(R). https://doi.org/10.1103/physreva.96.041603

We investigate the existence of topological phases in a dense two-dimensional atomic lattice gas. The coupling of the atoms to the radiation field gives rise to dissipation and a nontrivial coherent long-range exchange interaction whose form goes bey... Read More about Topological properties of a dense atomic lattice gas.

Cooperative eigenmodes and scattering in one-dimensional atomic arrays (2016)
Journal Article
Bettles, R. J., Gardiner, S. A., & Adams, C. S. (2016). Cooperative eigenmodes and scattering in one-dimensional atomic arrays. Physical Review A, 94(4), Article 043844. https://doi.org/10.1103/physreva.94.043844

Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled dipole model, here we investigate th... Read More about Cooperative eigenmodes and scattering in one-dimensional atomic arrays.

Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array (2016)
Journal Article
Bettles, R. J., Gardiner, S. A., & Adams, C. S. (2016). Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Physical Review Letters, 116(10), Article 103602. https://doi.org/10.1103/physrevlett.116.103602

Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic arr... Read More about Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array.

Cooperative ordering in lattices of interacting two-level dipoles (2015)
Journal Article
Bettles, R., Gardiner, S., & Adams, C. (2015). Cooperative ordering in lattices of interacting two-level dipoles. Physical Review A, 92(6), Article 063822. https://doi.org/10.1103/physreva.92.063822

We investigate the cooperative behavior of regular monolayers of driven two-level dipoles, using classical electrodynamics simulations. The dipolar response results from the interference of many cooperative eigenmodes, each frequency-shifted from the... Read More about Cooperative ordering in lattices of interacting two-level dipoles.