Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data using Deep Learning Models (2018)
Presentation / Conference Contribution
Alhassan, Z., McGough, S., Alshammari, R., Daghstani, T., Budgen, D., & Al Moubayed, N. (2018, October). Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data using Deep Learning Models. Presented at 27th International Conference on Artificial Neural Networks (ICANN)., Rhodes, Greece

Clinical data is usually observed and recorded at irregular intervals and includes: evaluations, treatments, vital sign and lab test results. These provide an invaluable source of information to help diagnose and understand medical conditions. In thi... Read More about Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data using Deep Learning Models.

Stacked Denoising Autoencoders for Mortality Risk Prediction Using Imbalanced Clinical Data (2018)
Presentation / Conference Contribution
Alhassan, Z., McGough, A. S., Alshammari, R., Daghstani, T., Budgen, D., & Al Moubayed, N. (2018, December). Stacked Denoising Autoencoders for Mortality Risk Prediction Using Imbalanced Clinical Data. Presented at IEEE 17th International Conference on Machine Learning and Applications (ICMLA 2018)., Orlando, Fl, USA

Clinical data, such as evaluations, treatments, vital sign and lab test results, are usually observed and recorded in hospital systems. Making use of such data to help physicians to evaluate the mortality risk of in-hospital patients provides an inva... Read More about Stacked Denoising Autoencoders for Mortality Risk Prediction Using Imbalanced Clinical Data.