Skip to main content

Research Repository

Advanced Search

All Outputs (170)

Simultaneous multi-band radio-frequency detection using high-orbital-angular-momentum states in a Rydberg-atom receiver (2024)
Journal Article
Allinson, G., Jamieson, M. J., Mackellar, A. R., Downes, L. A., Adams, C. S., & Weatherill, K. J. (2024). Simultaneous multi-band radio-frequency detection using high-orbital-angular-momentum states in a Rydberg-atom receiver. Physical Review Research, 6(2), Article 023317. https://doi.org/10.1103/PhysRevResearch.6.023317

We demonstrate simultaneous detection of radio-frequency (RF) fields ranging from the very high-frequency (VHF) band (128 MHz) to terahertz frequencies (0.61 THz) using a caesium Rydberg-atom receiver. The RF fields are concurrently applied to a seri... Read More about Simultaneous multi-band radio-frequency detection using high-orbital-angular-momentum states in a Rydberg-atom receiver.

Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system. (2024)
Journal Article
Ding, D., Bai, Z., Liu, Z., Shi, B., Guo, G., Li, W., & Adams, C. S. (2024). Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system. Science Advances, 10(9), Article eadl5893. https://doi.org/10.1126/sciadv.adl5893

It is challenging to probe ergodicity breaking trends of a quantum many-body system when dissipation inevitably damages quantum coherence originated from coherent coupling and dispersive two-body interactions. Rydberg atoms provide a test bed to dete... Read More about Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system..

Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide (2024)
Journal Article
Pritchett, J. D., Gallagher, L. A. P., Brewin, A., Wong, H. Q. X., Langbein, W., Lynch, S. A., …Jones, M. P. A. (2024). Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide. APL Photonics, 9(3), Article 031303. https://doi.org/10.1063/5.0192710

Microwave–optical conversion is key to future networks of quantum devices, such as those based on superconducting technology. Conversion at the single quantum level requires strong nonlinearity, high bandwidth, and compatibility with a millikelvin en... Read More about Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide.

Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor (2023)
Journal Article
Wadenpfuhl, K., & Adams, C. S. (2023). Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor. Physical Review Letters, 131(14), Article 143002. https://doi.org/10.1103/PhysRevLett.131.143002

We observe synchronization in a thermal (35-60 °C) atomic (Rb) ensemble driven to a highly excited Rydberg state (principle quantum number n ranging from 43 to 79). Synchronization in this system is unexpected due to the atomic motion; however, we sh... Read More about Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor.

Detection of 3–300 MHz electric fields using Floquet sideband gaps by “Rabi matching” dressed Rydberg atoms (2023)
Journal Article
Rotunno, A. P., Berweger, S., Prajapati, N., Simons, M. T., Artusio-Glimpse, A. B., Holloway, C. L., …Adams, C. (2023). Detection of 3–300 MHz electric fields using Floquet sideband gaps by “Rabi matching” dressed Rydberg atoms. Journal of Applied Physics, 134(13), Article 134501. https://doi.org/10.1063/5.0162101

Radio frequencies in high-frequency (HF) and very high-frequency (VHF) bands (3–300 MHz) are challenging for Rydberg atom-based detection schemes, as resonant detection requires exciting atoms to extremely high energy states. We demonstrate a method... Read More about Detection of 3–300 MHz electric fields using Floquet sideband gaps by “Rabi matching” dressed Rydberg atoms.

Observation of Rydberg blockade due to the charge-dipole interaction between an atom and a polar molecule (2023)
Journal Article
Guttridge, A., Ruttley, D., Baldock, A., González-Férez, R., Sadeghpour, H., Adams, C., & Cornish, S. (2023). Observation of Rydberg blockade due to the charge-dipole interaction between an atom and a polar molecule. Physical Review Letters, 131(1), Article 013401. https://doi.org/10.1103/PhysRevLett.131.013401

We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers. The molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently transferred to t... Read More about Observation of Rydberg blockade due to the charge-dipole interaction between an atom and a polar molecule.

Universality of Z3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms (2023)
Journal Article
Benhemou, A., Angkhanawin, T., Adams, C. S., Browne, D. E., & Pachos, J. K. (2023). Universality of Z3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms. Physical Review Research, 5(2), Article 023076. https://doi.org/10.1103/physrevresearch.5.023076

Parafermions are Zn generalizations of Majorana quasiparticles, with fractional non-Abelian statistics. They can be used to encode topological qudits and perform Clifford operations by their braiding. Here we investigate the generation of quantum gat... Read More about Universality of Z3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms.

Rapid readout of terahertz orbital angular momentum beams using atom-based imaging (2022)
Journal Article
Downes, L. A., Whiting, D. J., Adams, C. S., & Weatherill, K. J. (2022). Rapid readout of terahertz orbital angular momentum beams using atom-based imaging. Optics Letters, 47(22), 6001-6004. https://doi.org/10.1364/ol.476945

We demonstrate the rapid readout of terahertz orbital angular momentum (OAM) beams using an atomic-vapor-based imaging technique. OAM modes with both azimuthal and radial indices are created using phase-only transmission plates. The beams undergo ter... Read More about Rapid readout of terahertz orbital angular momentum beams using atom-based imaging.

Purcell-enhanced dipolar interactions in nanostructures (2022)
Journal Article
Skljarow, A., Kübler, H., Adams, C., Pfau, T., Löw, R., & Alaeian, H. (2022). Purcell-enhanced dipolar interactions in nanostructures. Physical Review Research, 4(2), https://doi.org/10.1103/physrevresearch.4.023073

Strong light-induced interactions between atoms are known to cause nonlinearities at a few-photon level, which are crucial for applications in quantum information processing. Compared to free space, the scattering and the light-induced dipolar intera... Read More about Purcell-enhanced dipolar interactions in nanostructures.

Terahertz electrometry via infrared spectroscopy of atomic vapor (2022)
Journal Article
Chen, S., Reed, D. J., MacKellar, A. R., Downes, L. A., Almuhawish, N. F., Jamieson, M. J., …Weatherill, K. J. (2022). Terahertz electrometry via infrared spectroscopy of atomic vapor. Optica, 9(5), 485-491. https://doi.org/10.1364/optica.456761

In recent years, the characterisation of radiation falling within the so-called ‘terahertz (THz) gap’ has become an ever more prominent issue due to the increasing use of THz systems in applications such as nondestructive testing, security screening,... Read More about Terahertz electrometry via infrared spectroscopy of atomic vapor.

Transient Density-Induced Dipolar Interactions in a Thin Vapor Cell (2022)
Journal Article
Christaller, F., Mäusezahl, M., Moumtsilis, F., Belz, A., Kübler, H., Alaeian, H., …Pfau, T. (2022). Transient Density-Induced Dipolar Interactions in a Thin Vapor Cell. Physical Review Letters, 128(17), Article 173401. https://doi.org/10.1103/physrevlett.128.173401

We exploit the effect of light-induced atomic desorption to produce high atomic densities (n ≫ k3) in a rubidium vapor cell. An intense off-resonant laser is pulsed for roughly one nanosecond on a micrometersized sapphire-coated cell, which results i... Read More about Transient Density-Induced Dipolar Interactions in a Thin Vapor Cell.

High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O (2022)
Journal Article
Rogers, J. P., Gallagher, L. A., Pizzey, D., Pritchett, J. D., Adams, C. S., Jones, M. P., …Lynch, S. A. (2022). High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O. Physical Review B, 105(11), Article 115206. https://doi.org/10.1103/physrevb.105.115206

We present a study of even-parity Rydberg exciton states in cuprous oxide using second harmonic generation (SHG) spectroscopy. Excitonic states with principal quantum number n = 5 − 12 were excited by nanosecond pulses around 1143 nm. Using time-reso... Read More about High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O.

White-light versus discrete wavelength measurements of Faraday dispersion and the Verdet constant (2021)
Journal Article
Maxwell, J. L., Hughes, I. G., & Adams, C. S. (2022). White-light versus discrete wavelength measurements of Faraday dispersion and the Verdet constant. European Journal of Physics, 43(1), Article 015302. https://doi.org/10.1088/1361-6404/ac31d3

The wavelength dependence of the Faraday effect may be measured either sequentially at particular wavelengths using narrow band sources, or simultaneously at many wavelengths using a white-light or broadband source. We apply both methods to measure t... Read More about White-light versus discrete wavelength measurements of Faraday dispersion and the Verdet constant.

THz electrometry with Rydberg atoms and all IR lasers (2021)
Presentation / Conference Contribution
Chen, S., Reed, D., Downes, L. A., MacKellar, A. R., Almuhawish, N. F., Jamieson, M. J., …Weatherill, K. J. (2021). THz electrometry with Rydberg atoms and all IR lasers. In 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). https://doi.org/10.1109/irmmw-thz50926.2021.9567392

Rydberg electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting in an atomic vapor cell can be used as novel methods for electric-magnetic field detection. Here we make use of 3 infrared lasers to realize a Rydberg EIT system... Read More about THz electrometry with Rydberg atoms and all IR lasers.

Rydberg excitons in synthetic cuprous oxide Cu2O (2021)
Journal Article
Lynch, S. A., Hodges, C., Mandal, S., Langbein, W., Singh, R. P., Gallagher, L. A., …Jones, M. P. (2021). Rydberg excitons in synthetic cuprous oxide Cu2O. Physical Review Materials, 5(8), Article 084602. https://doi.org/10.1103/physrevmaterials.5.084602

High-lying Rydberg states of Mott-Wannier excitons are receiving considerable interest due to the possibility of adding long-range interactions to the physics of excitons. Here, we study Rydberg excitation in bulk synthetic cuprous oxide grown by the... Read More about Rydberg excitons in synthetic cuprous oxide Cu2O.

Collectively encoded Rydberg qubit (2021)
Journal Article
Spong, N. L., Jiao, Y., Hughes, O. D., Weatherill, K. J., Lesanovsky, I., & Adams, C. S. (2021). Collectively encoded Rydberg qubit. Physical Review Letters, 127(6), Article 063604. https://doi.org/10.1103/physrevlett.127.063604

We demonstrate a collectively-encoded qubit based on a single Rydberg excitation stored in an ensemble of N entangled atoms. Qubit rotations are performed by applying microwave fields that drive excitations between Rydberg states. Coherent read-out i... Read More about Collectively encoded Rydberg qubit.

Collective effects in the photon statistics of thermal atomic ensembles (2021)
Journal Article
Ribeiro, S., Cutler, T. F., Adams, C. S., & Gardiner, S. A. (2021). Collective effects in the photon statistics of thermal atomic ensembles. Physical Review A, 104(1), Article 013719. https://doi.org/10.1103/physreva.104.013719

We investigate the collective scattering of coherent light from a thermal alkali-metal vapor with temperatures ranging from 350 to 450 K, corresponding to average atomic spacings between 0.7 λ and 0.1 λ. We develop a theoretical model treating the at... Read More about Collective effects in the photon statistics of thermal atomic ensembles.

Microwave-optical coupling via Rydberg excitons in cuprous oxide (2021)
Journal Article
Gallagher, L. A., Rogers, J. P., Pritchett, J. D., Mistry, R. A., Pizzey, D., Adams, C. S., …Lynch, S. A. (2022). Microwave-optical coupling via Rydberg excitons in cuprous oxide. Physical Review Research, 4(1), https://doi.org/10.1103/physrevresearch.4.013031

We report exciton-mediated coupling between microwave and optical fields in cuprous oxide (Cu2O) at low temperatures. Rydberg excitonic states with principal quantum number up to n = 12 were observed at 4 K using both one-photon (absorption) and two-... Read More about Microwave-optical coupling via Rydberg excitons in cuprous oxide.

Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases (2020)
Journal Article
Bai, Z., Adams, C. S., Huang, G., & Li, W. (2020). Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases. Physical Review Letters, 125(26), Article 263605. https://doi.org/10.1103/physrevlett.125.263605

We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors where the laser resonantly excites atoms to Rydberg P states via a single-photon transition. Three different regimes of the light-atom i... Read More about Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases.

The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK (2020)
Journal Article
Gluyas, J., Adams, C., & Wilson, I. (2020). The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK. Energy Reports, 6(7), 229-237. https://doi.org/10.1016/j.egyr.2020.12.006

Large scale storage of heat is critical for the successful decarbonisation of the UK’s energy mix and for grid-balancing. Heat generation currently accounts for 50% of all energy use in the UK and most of this is produced by burning fossil natural ga... Read More about The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK.