Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Making molecules by mergoassociation: Two atoms in adjacent nonspherical optical traps (2023)
Journal Article
Bird, R. C., Le Sueur, C. R., & Hutson, J. M. (2023). Making molecules by mergoassociation: Two atoms in adjacent nonspherical optical traps. Physical Review Research, 5(4), https://doi.org/10.1103/physrevresearch.5.043086

Mergoassociation of two ultracold atoms to form a weakly bound molecule can occur when two optical traps that each contain a single atom are merged. Molecule formation occurs at an avoided crossing between a molecular state and the lowest motional st... Read More about Making molecules by mergoassociation: Two atoms in adjacent nonspherical optical traps.

Shielding collisions of ultracold CaF molecules with static electric fields (2023)
Journal Article
Mukherjee, B., Frye, M. D., Le Sueur, C. R., Tarbutt, M. R., & Hutson, J. M. (2023). Shielding collisions of ultracold CaF molecules with static electric fields. Physical Review Research, 5(3), Article 033097. https://doi.org/10.1103/physrevresearch.5.033097

We study collisions of ultracold CaF molecules in strong static electric fields. These fields allow the creation of long-range barriers in the interaction potential, effectively preventing the molecules from reaching the short-range region where inel... Read More about Shielding collisions of ultracold CaF molecules with static electric fields.

Formation of Ultracold Molecules by Merging Optical Tweezers (2023)
Journal Article
Ruttley, D. K., Guttridge, A., Spence, S., Bird, R. C., Le Sueur, C. R., Hutson, J. M., & Cornish, S. L. (2023). Formation of Ultracold Molecules by Merging Optical Tweezers. Physical Review Letters, 130(22), https://doi.org/10.1103/physrevlett.130.223401

We demonstrate the formation of a single RbCs molecule during the merging of two optical tweezers, one containing a single Rb atom and the other a single Cs atom. Both atoms are initially predominantly in the motional ground states of their respectiv... Read More about Formation of Ultracold Molecules by Merging Optical Tweezers.