Skip to main content

Research Repository

Advanced Search

All Outputs (49)

Ocean-bottom seismometers reveal surge dynamics in Earth’s longest-runout sediment flows (2025)
Journal Article
Kunath, P., Talling, P. J., Lange, D., Chi, W.-C., Baker, M. L., Urlaub, M., & Berndt, C. (2025). Ocean-bottom seismometers reveal surge dynamics in Earth’s longest-runout sediment flows. Communications Earth & Environment, 6(1), Article 147. https://doi.org/10.1038/s43247-025-02137-z

Turbidity currents carve Earth’s deepest canyons, form Earth’s largest sediment deposits, and break seabed telecommunications cables. Directly measuring turbidity currents is notoriously challenging due to their destructive impact on instruments with... Read More about Ocean-bottom seismometers reveal surge dynamics in Earth’s longest-runout sediment flows.

Seabed Seismographs Reveal Duration and Structure of Longest Runout Sediment Flows on Earth (2024)
Journal Article
Baker, M. L., Talling, P. J., Burnett, R., Pope, E. L., Ruffell, S. C., Urlaub, M., Clare, M. A., Jenkins, J., Dietze, M., Neasham, J., Silva Jacinto, R., Hage, S., Hasenhündl, M., Simmons, S. M., Heerema, C. J., Heijnen, M. S., Kunath, P., Cartigny, M. J. B., McGhee, C., & Parsons, D. R. (2024). Seabed Seismographs Reveal Duration and Structure of Longest Runout Sediment Flows on Earth. Geophysical Research Letters, 51(23), Article e2024GL111078. https://doi.org/10.1029/2024gl111078

Turbidity currents carve the deepest canyons on Earth, deposit its largest sediment accumulations, and break seabed telecommunication cables. Powerful canyon‐flushing turbidity currents break sensors placed in their path, making them notoriously chal... Read More about Seabed Seismographs Reveal Duration and Structure of Longest Runout Sediment Flows on Earth.

The diversity, frequency and severity of natural hazard impacts on subsea telecommunications networks (2024)
Journal Article
Bricheno, L., Yeo, I., Clare, M., Hunt, J., Griffiths, A., Carter, L., Talling, P. J., Baker, M., Wilson, S., West, M., Panuve, S., & Fonua, S. (2024). The diversity, frequency and severity of natural hazard impacts on subsea telecommunications networks. Earth-Science Reviews, 259, Article 104972. https://doi.org/10.1016/j.earscirev.2024.104972

Subsea cables underpin global communications, carrying more than 99 % of all digital data traffic worldwide. While this >1.6 million km-long network has been designed to be highly resilient, subsea cables can be damaged by a number of natural hazards... Read More about The diversity, frequency and severity of natural hazard impacts on subsea telecommunications networks.

A threshold in submarine channel curvature explains erosion rate and type (2024)
Journal Article
Zulkifli, Z., Clare, M. A., Heijnen, M., Lintern, D. G., Stacey, C., Talling, P. J., Cartigny, M. J., Minshull, T. A., Moreno, H. M., Peakall, J., & Darby, S. (2024). A threshold in submarine channel curvature explains erosion rate and type. Earth and Planetary Science Letters, 646, https://doi.org/10.1016/j.epsl.2024.118953

Submarine channels are conduits for sediment-laden flows called turbidity currents, which play a globally significant role in the offshore transport of sediment and organic carbon and pose a hazard to critical seafloor infrastructure. Time-lapse repe... Read More about A threshold in submarine channel curvature explains erosion rate and type.

Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon (2024)
Journal Article
Ruffell, S. C., Talling, P. J., Baker, M. L., Pope, E. L., Heijnen, M. S., Jacinto, R. S., Cartigny, M. J., Simmons, S. M., Clare, M. A., Heerema, C. J., McGhee, C., Hage, S., Hasenhündl, M., & Parsons, D. R. (2024). Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon. Geomorphology, 463, Article 109350. https://doi.org/10.1016/j.geomorph.2024.109350

The largest canyons on Earth occur on the seafloor, and seabed sediment flows called turbidity currents play a key role in carving these submarine canyons. However, the processes by which turbidity currents erode submarine canyons are very poorly doc... Read More about Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon.

Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents (2024)
Journal Article
Baker, M. L., Hage, S., Talling, P. J., Acikalin, S., Hilton, R. G., Haghipour, N., Ruffell, S. C., Pope, E. L., Jacinto, R. S., Clare, M. A., & Sahin, S. (2024). Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents. Geology, 52(8), 631-636. https://doi.org/10.1130/g51976.1

Burial of organic carbon in marine sediments is a long-term sink of atmospheric CO2, and submarine turbidity currents are volumetrically the most important sediment transport process on Earth. Yet the processes, amounts, and efficiency of organic car... Read More about Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents.

Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel (2024)
Journal Article
Hasenhündl, M., Talling, P. J., Pope, E. L., Baker, M. L., Heijnen, M. S., Ruffell, S. C., …Cartigny, M. J. B. (2024). Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel. Frontiers in Earth Science, 12, Article 1381019. https://doi.org/10.3389/feart.2024.1381019

Submarine canyons and channels are globally important pathways for sediment, organic carbon, nutrients and pollutants to the deep sea, and they form the largest sediment accumulations on Earth. However, studying these remote submarine systems compreh... Read More about Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel.

Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities (2023)
Book Chapter
Clare, M. A., Lintern, G., Pope, E., Baker, M., Ruffell, S., Zulkifli, M. Z., …Talling, P. J. (2024). Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities. In G. Bayrakci, & F. Klingelhoefer (Eds.), Noisy Oceans: Monitoring Seismic and Acoustic Signals in the Marine Environment (59-82). Wiley. https://doi.org/10.1002/9781119750925.ch5

Submarine landslides pose a hazard to coastal communities and critical seafloor infrastructure, occurring on all of the world's continental margins, from coastal zones to hadal trenches. Offshore monitoring has been limited by the largely unpredictab... Read More about Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities.

The Global Turbidity Current Pump and Its Implications for Organic Carbon Cycling (2023)
Journal Article
Talling, P. J., Hage, S., Baker, M. L., Bianchi, T. S., Hilton, R. G., & Maier, K. L. (2024). The Global Turbidity Current Pump and Its Implications for Organic Carbon Cycling. Annual Review of Marine Science, 16(1), https://doi.org/10.1146/annurev-marine-032223-103626

Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most t... Read More about The Global Turbidity Current Pump and Its Implications for Organic Carbon Cycling.

Predicting turbidity current activity offshore from meltwater-fed river deltas (2023)
Journal Article
Bailey, L. P., Clare, M. A., Pope, E. L., Haigh, I. D., Cartigny, M. J., Talling, P. J., Lintern, D. G., Hage, S., & Heijnen, M. (2023). Predicting turbidity current activity offshore from meltwater-fed river deltas. Earth and Planetary Science Letters, 604, Article 117977. https://doi.org/10.1016/j.epsl.2022.117977

Quantification of the controls on turbidity current recurrence is required to better constrain land to sea fluxes of sediment, carbon and pollutants, and design resilient infrastructure that is vulnerable to such flows. This is particularly important... Read More about Predicting turbidity current activity offshore from meltwater-fed river deltas.

Time‐Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact With the Seabed at Centimeter‐Scale (2023)
Journal Article
Wolfson‐Schwehr, M., Paull, C. K., Caress, D. W., Gwiazda, R., Nieminski, N. M., Talling, P. J., …Troni, G. (2023). Time‐Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact With the Seabed at Centimeter‐Scale. Journal of Geophysical Research: Earth Surface, 128(4), https://doi.org/10.1029/2022jf006705

Here we show how ultra-high resolution seabed mapping using new technology can help to understand processes that sculpt submarine canyons. Time-lapse seafloor surveys were conducted in the axis of Monterey Canyon, ∼50 km from the canyon head (∼1,840... Read More about Time‐Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact With the Seabed at Centimeter‐Scale.

Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming (2022)
Journal Article
Pope, E. L., Heijnen, M. S., Talling, P. J., Jacinto, R. S., Gaillot, A., Baker, M. L., Hage, S., Hasenhündl, M., Heerema, C. J., McGhee, C., Ruffell, S. C., Simmons, S. M., Cartigny, M. J., Clare, M. A., Dennielou, B., Parsons, D. R., Peirce, C., & Urlaub, M. (2022). Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming. Nature Geoscience, 15(10), 845-853. https://doi.org/10.1038/s41561-022-01017-x

Landslide-dams, which are often transient, can strongly affect the geomorphology, and sediment and geochemical fluxes, within subaerial fluvial systems. The potential occurrence and impact of analogous landslide-dams in submarine canyons has, however... Read More about Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming.

Longest sediment flows yet measured show how major rivers connect efficiently to deep sea (2022)
Journal Article
Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Jacinto, R. S., Heijnen, M. S., Hage, S., Simmons, S. M., Hasenhündl, M., Heerema, C. J., McGhee, C., Apprioual, R., Ferrant, A., Cartigny, M. J., Parsons, D. R., Clare, M. A., Tshimanga, R. M., Trigg, M. A., Cula, C. A., Faria, R., …Hilton, R. J. (2022). Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature Communications, 13(1), https://doi.org/10.1038/s41467-022-31689-3

Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flo... Read More about Longest sediment flows yet measured show how major rivers connect efficiently to deep sea.

Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada) (2022)
Journal Article
Hage, S., Galy, V., Cartigny, M., Heerema, C., Heijnen, M., Acikalin, S., Clare, M., Giesbrecht, I., Gröcke, D., Hendry, A., Hilton, R., Hubbard, S., Hunt, J., Lintern, D., McGhee, C., Parsons, D., Pope, E., Stacey, C., Sumner, E., Tank, S., & Talling, P. (2022). Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada). Journal of Geophysical Research: Biogeosciences, 127(6), https://doi.org/10.1029/2022jg006824

The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geo... Read More about Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada).

First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents (2022)
Journal Article
Pope, E. L., Cartigny, M. J., Clare, M. A., Talling, P. J., Lintern, D. G., Vellinga, A., Hage, S., Açikalin, S., Bailey, L., Chapplow, N., Chen, Y., Eggenhuisen, J. T., Hendry, A., Heerema, C. J., Heijnen, M. S., Hubbard, S. M., Hunt, J. E., McGhee, C., Parsons, D. R., Simmons, S. M., …Vendettuoli, D. (2022). First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20), Article eabj3220. https://doi.org/10.1126/sciadv.abj3220

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are de... Read More about First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents.

Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes? (2022)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Pope, E. L., Bailey, L., Sumner, E., Gwyn Lintern, D., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Hubbard, S. M., Eggenhuisen, J. T., Kane, I., & Hughes Clarke, J. E. (2022). Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and Planetary Science Letters, 584, Article 117481. https://doi.org/10.1016/j.epsl.2022.117481

Submarine channels are the primary conduits for land-derived material, including organic carbon, pollutants, and nutrients, into the deep-sea. The flows (turbidity currents) that traverse these systems can pose hazards to seafloor infrastructure such... Read More about Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?.

Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon (2022)
Journal Article
Gwiazda, R., Paull, C., Kieft, B., Klimov, D., Herlien, R., Lundsten, E., McCann, M., Cartigny, M. J., Hamilton, A., Xu, J., Maier, K. L., Parsons, D., & Talling, P. J. (2022). Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon. Journal of Geophysical Research: Earth Surface, 127(2), https://doi.org/10.1029/2021jf006437

The near-bed section of submarine gravity flows travels at the highest and most destructive speeds making direct measurements of this region of the flow difficult. Here results are presented from “boulder-like” Benthic Event Detectors (BEDs) that mea... Read More about Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon.

How distinctive are flood-triggered turbidity currents? (2022)
Journal Article
Heerema, C. J., Cartigny, M. J., Jacinto, R. S., Simmons, S. M., Apprioual, R., & Talling, P. J. (2022). How distinctive are flood-triggered turbidity currents?. Journal of Sedimentary Research, 92(1), 1-11. https://doi.org/10.2110/jsr.2020.168

Turbidity currents triggered at river mouths form an important highway for sediment, organic carbon, and nutrients to the deep sea. Consequently, it has been proposed that the deposits of these flood-triggered turbidity currents provide important lon... Read More about How distinctive are flood-triggered turbidity currents?.

Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers (2021)
Journal Article
Bailey, L. P., Clare, M. A., Rosenberger, K. J., Cartigny, M. J., Talling, P. J., Paull, C. K., Gwiazda, R., Parsons, D. R., Simmons, S. M., Xu, J., Haigh, I. D., Maier, K. L., McGann, M., & Lundsten, E. (2021). Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 562, Article 116845. https://doi.org/10.1016/j.epsl.2021.116845

Turbidity currents dominate sediment transfer into the deep ocean, and can damage critical seabed infrastructure. It is commonly inferred that powerful turbidity currents are triggered by major external events, such as storms, river floods, or earthq... Read More about Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers.